Comparative Analysis of GloSea6 Hindcasts for Two Extreme El Niño Events and Their Impact on Indo-Western North Pacific Climate

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Seung-Hwon Hyun, Seung-On Hwang, Chao Liu, Soon-Il An, Yu-Kyung Hyun
{"title":"Comparative Analysis of GloSea6 Hindcasts for Two Extreme El Niño Events and Their Impact on Indo-Western North Pacific Climate","authors":"Seung-Hwon Hyun,&nbsp;Seung-On Hwang,&nbsp;Chao Liu,&nbsp;Soon-Il An,&nbsp;Yu-Kyung Hyun","doi":"10.1007/s13143-024-00388-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, GloSea6 hindcast (HCST) from the UK Met Office is used to investigate the model prediction skill for the impacts on the East Asian summer associated with two extreme El Niño cases (1997/1998 and 2015/2016). For the 1998 case, we found that GloSea6 model is able to predict the ocean–atmosphere circulations one to two seasons ahead, including the anomalously positive sea surface temperature (SST) in the Tropical Indian Ocean (TIO) and the anomalous anticyclone (AAC) in the Western North Pacific during the spring and summer seasons. However, for the 2016 case it fails to capture the observed fast cooling of the spring TIO SST and the rapid decaying of the summer AAC, due to an overestimated linkage between the summer TIO and the precedent winter El Niño. Physically, the exaggerated model SST warming over both the eastern and western Indian Ocean suppresses the development of the surface westerly wind that enhances the summer monsoon flow in the TIO and cools the warmed SST as in the real world. According to further analysis, the sensitivity of the TIO is linked to the formation of the spring AAC, which is influenced by the longitudinal position of warm Pacific SST, causing the HCST to display a more idealized El Niño-TIO-AAC teleconnection than the observations. Thus, simulating the decaying El Niño and its teleconnection to the TIO is crucial for reliable seasonal forecasts of East Asian climate during post-El Niño summers.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"61 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00388-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-024-00388-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, GloSea6 hindcast (HCST) from the UK Met Office is used to investigate the model prediction skill for the impacts on the East Asian summer associated with two extreme El Niño cases (1997/1998 and 2015/2016). For the 1998 case, we found that GloSea6 model is able to predict the ocean–atmosphere circulations one to two seasons ahead, including the anomalously positive sea surface temperature (SST) in the Tropical Indian Ocean (TIO) and the anomalous anticyclone (AAC) in the Western North Pacific during the spring and summer seasons. However, for the 2016 case it fails to capture the observed fast cooling of the spring TIO SST and the rapid decaying of the summer AAC, due to an overestimated linkage between the summer TIO and the precedent winter El Niño. Physically, the exaggerated model SST warming over both the eastern and western Indian Ocean suppresses the development of the surface westerly wind that enhances the summer monsoon flow in the TIO and cools the warmed SST as in the real world. According to further analysis, the sensitivity of the TIO is linked to the formation of the spring AAC, which is influenced by the longitudinal position of warm Pacific SST, causing the HCST to display a more idealized El Niño-TIO-AAC teleconnection than the observations. Thus, simulating the decaying El Niño and its teleconnection to the TIO is crucial for reliable seasonal forecasts of East Asian climate during post-El Niño summers.

两次极端El Niño事件GloSea6预报的对比分析及其对北太平洋印度洋-西部气候的影响
本研究利用英国气象局的GloSea6 hindcast (HCST)数据,研究了两个极端El Niño事件(1997/1998和2015/2016)对东亚夏季影响的模式预测技巧。对于1998年的情况,GloSea6模式能够提前1 ~ 2个季节预测海气环流,包括热带印度洋(TIO)海温异常正(SST)和北太平洋西部春夏季的异常反气旋(AAC)。然而,对于2016年的情况,由于高估了夏季TIO与先前冬季El Niño之间的联系,它未能捕捉到观测到的春季TIO海表温度的快速冷却和夏季AAC的快速衰减。从物理上讲,东印度洋和西印度洋的模式海温变暖被夸大,抑制了地面西风的发展,而西风增强了东印度洋的夏季风流动,并使升温的海温像现实世界一样变冷。进一步分析,TIO的灵敏度与春季AAC的形成有关,而春季AAC受暖太平洋海温的纵向位置影响,导致HCST表现出比观测更理想的El Niño-TIO-AAC遥相关。因此,模拟El Niño衰减及其与TIO的遥相关对于可靠地预测El Niño后夏季东亚气候至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信