Understanding the relationship between pore structure and properties of triply periodic minimal surface bone scaffolds

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Yadi Sun, Yan Wang, Benchao Dong, Peichuan Yang, Chunhui Ji, Yiyang Li, Jianxiong Ma, Xinlong Ma
{"title":"Understanding the relationship between pore structure and properties of triply periodic minimal surface bone scaffolds","authors":"Yadi Sun,&nbsp;Yan Wang,&nbsp;Benchao Dong,&nbsp;Peichuan Yang,&nbsp;Chunhui Ji,&nbsp;Yiyang Li,&nbsp;Jianxiong Ma,&nbsp;Xinlong Ma","doi":"10.1007/s10856-024-06856-1","DOIUrl":null,"url":null,"abstract":"<div><p>The number of patients with bone defects caused by trauma and diseases has been increasing year by year. The treatment of bone defects remains a major challenge in clinical practice. Bone scaffolds are increasingly favored for repairing bones, with triply periodic minimal surface (TPMS) scaffolds emerging as a popular option due to their superior performance. The aim of this review is to highlight the crucial influence of pore structure on the properties of TPMS bone scaffolds, offering important insights for their innovation and production. It briefly examines various elements that influence the properties of TPMS bone scaffolds, such as pore shape, porosity, pore diameter, and curvature. By analyzing these elements, this review serves as a valuable reference for upcoming research and practical implementations in the field of bone tissue engineering.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06856-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06856-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The number of patients with bone defects caused by trauma and diseases has been increasing year by year. The treatment of bone defects remains a major challenge in clinical practice. Bone scaffolds are increasingly favored for repairing bones, with triply periodic minimal surface (TPMS) scaffolds emerging as a popular option due to their superior performance. The aim of this review is to highlight the crucial influence of pore structure on the properties of TPMS bone scaffolds, offering important insights for their innovation and production. It briefly examines various elements that influence the properties of TPMS bone scaffolds, such as pore shape, porosity, pore diameter, and curvature. By analyzing these elements, this review serves as a valuable reference for upcoming research and practical implementations in the field of bone tissue engineering.

Graphical Abstract

三周期最小表面骨支架孔结构与性能关系的研究
创伤和疾病引起的骨缺损患者逐年增加。骨缺损的治疗仍然是临床实践中的一个重大挑战。骨支架在骨修复中越来越受到青睐,三周期最小表面(TPMS)支架由于其优越的性能而成为一种流行的选择。本文综述的目的是强调孔隙结构对TPMS骨支架性能的重要影响,为其创新和生产提供重要见解。它简要地检查了影响TPMS骨支架性能的各种因素,如孔隙形状、孔隙度、孔径和曲率。通过对这些因素的分析,为今后骨组织工程领域的研究和实际应用提供有价值的参考。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信