The Existence of Stratified Linearly Steady Two-Mode Water Waves with Stagnation Points

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Jun Wang, Fei Xu, Yong Zhang
{"title":"The Existence of Stratified Linearly Steady Two-Mode Water Waves with Stagnation Points","authors":"Jun Wang,&nbsp;Fei Xu,&nbsp;Yong Zhang","doi":"10.1007/s00021-024-00916-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the analysis of stratified steady periodic water waves that contain stagnation points. The initial step involves transforming the free-boundary problem into a quasilinear pseudodifferential equation through a conformal mapping technique, resulting in a periodic function of a single variable. By utilizing the theorems developed by Crandall and Rabinowitz, we establish the existence and formal stability of small-amplitude steady periodic capillary-gravity water waves in the presence of stratified linear flows. Notably, the stability of bifurcation solution curves is strongly influenced by the stratified nature of the system. Additionally, as the Bernoulli’s function <span>\\(\\beta \\)</span> approaches critical values, we observe that the linearized problem exhibits a two-dimensional kernel. To address this new phenomenon, we perform the Lyapunov-Schmidt reduction, which enables us to establish the existence of two-mode water waves. Such wave is, generically, a combination of two different Fourier modes. As far as we know, the two-mode water waves in stratified flow are first constructed by us. Finally, we demonstrate the presence of internal stagnation points within these waves.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00916-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the analysis of stratified steady periodic water waves that contain stagnation points. The initial step involves transforming the free-boundary problem into a quasilinear pseudodifferential equation through a conformal mapping technique, resulting in a periodic function of a single variable. By utilizing the theorems developed by Crandall and Rabinowitz, we establish the existence and formal stability of small-amplitude steady periodic capillary-gravity water waves in the presence of stratified linear flows. Notably, the stability of bifurcation solution curves is strongly influenced by the stratified nature of the system. Additionally, as the Bernoulli’s function \(\beta \) approaches critical values, we observe that the linearized problem exhibits a two-dimensional kernel. To address this new phenomenon, we perform the Lyapunov-Schmidt reduction, which enables us to establish the existence of two-mode water waves. Such wave is, generically, a combination of two different Fourier modes. As far as we know, the two-mode water waves in stratified flow are first constructed by us. Finally, we demonstrate the presence of internal stagnation points within these waves.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信