{"title":"The Existence of Stratified Linearly Steady Two-Mode Water Waves with Stagnation Points","authors":"Jun Wang, Fei Xu, Yong Zhang","doi":"10.1007/s00021-024-00916-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the analysis of stratified steady periodic water waves that contain stagnation points. The initial step involves transforming the free-boundary problem into a quasilinear pseudodifferential equation through a conformal mapping technique, resulting in a periodic function of a single variable. By utilizing the theorems developed by Crandall and Rabinowitz, we establish the existence and formal stability of small-amplitude steady periodic capillary-gravity water waves in the presence of stratified linear flows. Notably, the stability of bifurcation solution curves is strongly influenced by the stratified nature of the system. Additionally, as the Bernoulli’s function <span>\\(\\beta \\)</span> approaches critical values, we observe that the linearized problem exhibits a two-dimensional kernel. To address this new phenomenon, we perform the Lyapunov-Schmidt reduction, which enables us to establish the existence of two-mode water waves. Such wave is, generically, a combination of two different Fourier modes. As far as we know, the two-mode water waves in stratified flow are first constructed by us. Finally, we demonstrate the presence of internal stagnation points within these waves.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00916-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the analysis of stratified steady periodic water waves that contain stagnation points. The initial step involves transforming the free-boundary problem into a quasilinear pseudodifferential equation through a conformal mapping technique, resulting in a periodic function of a single variable. By utilizing the theorems developed by Crandall and Rabinowitz, we establish the existence and formal stability of small-amplitude steady periodic capillary-gravity water waves in the presence of stratified linear flows. Notably, the stability of bifurcation solution curves is strongly influenced by the stratified nature of the system. Additionally, as the Bernoulli’s function \(\beta \) approaches critical values, we observe that the linearized problem exhibits a two-dimensional kernel. To address this new phenomenon, we perform the Lyapunov-Schmidt reduction, which enables us to establish the existence of two-mode water waves. Such wave is, generically, a combination of two different Fourier modes. As far as we know, the two-mode water waves in stratified flow are first constructed by us. Finally, we demonstrate the presence of internal stagnation points within these waves.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.