Vibrational characteristics and critical damping behavior of nonlocal lipid/graphene sandwich nanoplates by incorporating viscoelastic features

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Abbas Moradi, Afshin Ghanbarzadeh, Mohammad Shishesaz, Hamid M. Sedighi
{"title":"Vibrational characteristics and critical damping behavior of nonlocal lipid/graphene sandwich nanoplates by incorporating viscoelastic features","authors":"Abbas Moradi,&nbsp;Afshin Ghanbarzadeh,&nbsp;Mohammad Shishesaz,&nbsp;Hamid M. Sedighi","doi":"10.1007/s11043-024-09751-y","DOIUrl":null,"url":null,"abstract":"<div><p>Integrating mechanical nanosensors with biological structures allows evaluating the mass, displacements, and forces in subcellular and cellular activities. On the other hand, studying bio-nanosensors is crucial for identifying biological, chemical, and physical structures. Therefore, the vibration analysis and critical damping behavior of Lipid/Graphene sandwich viscoelastic nanoplates must be studied. The current work investigates a bio-nanostructure referred to as sandwich viscoelastic nanoplates. The differential equations of bio-nanostructure embedded on the viscoelastic substrate have been derived based on the principle of Hamilton and solved numerically using a general differential quadrature method (GDQM) to predict the vibration behaviors of the bio-nanostructure. The differential quadrature method is utilized to extract the natural frequency and critical damping of the Lipid/ Graphene sandwich nanoplates with structural damping for the first time, and also examines the impact of the viscoelastic medium and the size effect (nonlocal parameter) on the vibration behavior of the bio-nanostructure. The findings of this study indicate that the frequencies of nanostructures decrease noticeably as the structural damping and the damping coefficients of the viscoelastic foundation increase. Moreover, by increasing the damping coefficient values of the viscoelastic foundation, the critical damping of Lipid/Graphene sandwich nanoplates (bifurcation curve) occurs at lower values of the nonlocal parameter. On the contrary, with the increase of structural damping, the critical damping of this bio-nanostructure occurs at higher nonlocal parameter values. These findings can be advantageous for the design and production of nanoscale equipment, including bio-nanosensors, resonators, and nano-devices, which require high precision and sensitivity.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09751-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating mechanical nanosensors with biological structures allows evaluating the mass, displacements, and forces in subcellular and cellular activities. On the other hand, studying bio-nanosensors is crucial for identifying biological, chemical, and physical structures. Therefore, the vibration analysis and critical damping behavior of Lipid/Graphene sandwich viscoelastic nanoplates must be studied. The current work investigates a bio-nanostructure referred to as sandwich viscoelastic nanoplates. The differential equations of bio-nanostructure embedded on the viscoelastic substrate have been derived based on the principle of Hamilton and solved numerically using a general differential quadrature method (GDQM) to predict the vibration behaviors of the bio-nanostructure. The differential quadrature method is utilized to extract the natural frequency and critical damping of the Lipid/ Graphene sandwich nanoplates with structural damping for the first time, and also examines the impact of the viscoelastic medium and the size effect (nonlocal parameter) on the vibration behavior of the bio-nanostructure. The findings of this study indicate that the frequencies of nanostructures decrease noticeably as the structural damping and the damping coefficients of the viscoelastic foundation increase. Moreover, by increasing the damping coefficient values of the viscoelastic foundation, the critical damping of Lipid/Graphene sandwich nanoplates (bifurcation curve) occurs at lower values of the nonlocal parameter. On the contrary, with the increase of structural damping, the critical damping of this bio-nanostructure occurs at higher nonlocal parameter values. These findings can be advantageous for the design and production of nanoscale equipment, including bio-nanosensors, resonators, and nano-devices, which require high precision and sensitivity.

结合粘弹性特性的非局部脂质/石墨烯夹层纳米板的振动特性和临界阻尼行为
将机械纳米传感器与生物结构相结合,可以评估亚细胞和细胞活动中的质量、位移和力。另一方面,研究生物纳米传感器对于识别生物、化学和物理结构至关重要。因此,必须对脂质/石墨烯夹层粘弹性纳米板的振动分析和临界阻尼行为进行研究。目前的工作是研究一种被称为三明治粘弹性纳米板的生物纳米结构。基于Hamilton原理推导了生物纳米结构在粘弹性衬底上的微分方程,并采用通用微分正交法(GDQM)进行了数值求解,以预测生物纳米结构的振动行为。首次利用微分正交法提取了具有结构阻尼的脂质/石墨烯夹层纳米板的固有频率和临界阻尼,并研究了粘弹性介质和尺寸效应(非局部参数)对生物纳米结构振动行为的影响。研究结果表明,随着结构阻尼和粘弹性基础阻尼系数的增大,纳米结构的频率显著降低。此外,通过增加粘弹性基础的阻尼系数值,脂质/石墨烯夹层纳米板的临界阻尼(分岔曲线)发生在非局部参数的较低值。相反,随着结构阻尼的增大,该生物纳米结构的临界阻尼出现在较高的非局部参数值处。这些发现有助于设计和生产纳米级设备,包括生物纳米传感器、谐振器和纳米器件,这些都需要高精度和灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信