Qi Zhang, Qiangqiang Zhao, Han Wang, Yiguo Yao, Lei Li, Yulin Wei, Ruida Xu, Chenyang Zhang, Erik O. Shalenov, Yongguang Tu, Kai Wang, Mingjia Xiao
{"title":"Tuning Isomerism Effect in Organic Bulk Additives Enables Efficient and Stable Perovskite Solar Cells","authors":"Qi Zhang, Qiangqiang Zhao, Han Wang, Yiguo Yao, Lei Li, Yulin Wei, Ruida Xu, Chenyang Zhang, Erik O. Shalenov, Yongguang Tu, Kai Wang, Mingjia Xiao","doi":"10.1007/s40820-024-01613-z","DOIUrl":null,"url":null,"abstract":"<div><h2> Highlights</h2><div>\n \n \n<ul>\n <li>\n <p>By anchoring the perovskite sites with the functional groups of CzBP (P = O···Pb, N–H···I and P = O···N–H), the bulk nonradiative recombination is suppressed and ion migration is inhibited. Doping perovskite films with CzBP led to enhanced intercrystallite interactions in the bulk and improved photoluminescence quantum yield.</p>\n </li>\n <li>\n <p>Using a typical electron-rich moiety as the π-linker to replace the classic alkyl spacer in CzBP facilitated the charge-carrier transport processes and the passivation effect of carbazole further contributed to high <i>V</i><sub>OC</sub>. The optimized 2,7-CzBP-treated device achieves the highest power conversion efficiency (PCE) of 25.88%, with <i>V</i><sub>OC</sub> of 1.189 V for 0.090 cm<sup>2</sup> and the perovskite solar cell module with a PCE of 21.04% for 14 cm<sup>2</sup>.</p>\n </li>\n <li>\n <p>For 2,7-CzBP, the more extended conjugation and the more linear molecular geometry result in a more effective improvement in the performance.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01613-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01613-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Highlights
By anchoring the perovskite sites with the functional groups of CzBP (P = O···Pb, N–H···I and P = O···N–H), the bulk nonradiative recombination is suppressed and ion migration is inhibited. Doping perovskite films with CzBP led to enhanced intercrystallite interactions in the bulk and improved photoluminescence quantum yield.
Using a typical electron-rich moiety as the π-linker to replace the classic alkyl spacer in CzBP facilitated the charge-carrier transport processes and the passivation effect of carbazole further contributed to high VOC. The optimized 2,7-CzBP-treated device achieves the highest power conversion efficiency (PCE) of 25.88%, with VOC of 1.189 V for 0.090 cm2 and the perovskite solar cell module with a PCE of 21.04% for 14 cm2.
For 2,7-CzBP, the more extended conjugation and the more linear molecular geometry result in a more effective improvement in the performance.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.