Younes Moqine, Brahim Adnane, Aziz Khribach, Abdelghani El Houri, Ayyoub El Mouatassim, Rachid Houça, Soufiane Belhouideg
{"title":"Impact of Rashba Coupling on Entanglement and Quantum Teleportation Fidelity in Graphene Systems","authors":"Younes Moqine, Brahim Adnane, Aziz Khribach, Abdelghani El Houri, Ayyoub El Mouatassim, Rachid Houça, Soufiane Belhouideg","doi":"10.1007/s10773-024-05879-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the significant role of Rashba coupling in controlling entanglement within graphene systems. We demonstrate that tuning Rashba coupling allows for effective enhancement or suppression of entanglement, with higher values providing increased robustness against thermal fluctuations. Our results indicate that achieving substantial entanglement may require external factors, such as enhanced Rashba interactions. Notably, while elevated temperatures typically degrade quantum coherence, we find that significant Rashba coupling can preserve quantum correlations, maintaining coherence under challenging thermal conditions. This preservation is essential for improving the fidelity of quantum teleportation processes, which depend on the availability of robust entangled states. Overall, the interplay between Rashba coupling, temperature, and entanglement in graphene carries significant implications for future advancements in quantum technology. The potential to develop stable and efficient quantum information systems utilizing graphene may lead to transformative breakthroughs in quantum computing and communication, underscoring the necessity for continued exploration in this promising area.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05879-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the significant role of Rashba coupling in controlling entanglement within graphene systems. We demonstrate that tuning Rashba coupling allows for effective enhancement or suppression of entanglement, with higher values providing increased robustness against thermal fluctuations. Our results indicate that achieving substantial entanglement may require external factors, such as enhanced Rashba interactions. Notably, while elevated temperatures typically degrade quantum coherence, we find that significant Rashba coupling can preserve quantum correlations, maintaining coherence under challenging thermal conditions. This preservation is essential for improving the fidelity of quantum teleportation processes, which depend on the availability of robust entangled states. Overall, the interplay between Rashba coupling, temperature, and entanglement in graphene carries significant implications for future advancements in quantum technology. The potential to develop stable and efficient quantum information systems utilizing graphene may lead to transformative breakthroughs in quantum computing and communication, underscoring the necessity for continued exploration in this promising area.
期刊介绍:
International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.