Muhammad Awais Ashraf, Muhammad Asif Raza, Azka Imran, Muhammad Nabeel Amjad
{"title":"Next-generation vaccines for influenza B virus: advancements and challenges","authors":"Muhammad Awais Ashraf, Muhammad Asif Raza, Azka Imran, Muhammad Nabeel Amjad","doi":"10.1007/s00705-024-06210-4","DOIUrl":null,"url":null,"abstract":"<div><p>To battle seasonal outbreaks of influenza B virus infection, which continue to pose a major threat to world health, new and improved vaccines are urgently needed. In this article, we discuss the current state of next-generation influenza B vaccine development, including both advancements and challenges. This review covers the shortcomings of existing influenza vaccines and stresses the need for more-effective and broadly protective vaccines and more-easily scalable manufacturing processes. New possibilities for vaccine development have emerged due to recent technical developments such as virus-like particle (VLP) platforms, recombinant DNA technologies, and reverse genetics. By using these methods, vaccines can be developed that elicit stronger and longer-lasting immune responses against various strains of influenza B virus. Vaccines may be more effective and immunogenic when adjuvants and new delivery mechanisms are used. Progress has been made in the development of influenza B vaccine mRNA vaccines, nanoparticle-based vaccines, and vector-based vaccines. However, there are still several obstacles to overcome before next-generation influenza B vaccines can be widely used, including the challenge of antigenic drift, the extinction of the B/Yamagata lineage, and difficulties in strain selection. There are also other challenges related to public acceptance, vaccine distribution, manufacturing complexity, and regulations. To overcome these challenges, scientists, politicians, and pharmaceutical firms must work together to expedite the development and licensing of vaccines and the establishment of immunization programs. The need for constant monitoring and quick adaptation of vaccines to match the currently circulating strains is further highlighted by the appearance of novel influenza B virus variants. To be ready for future pandemics and influenza B outbreaks, we need better vaccines and better monitoring systems.</p></div>","PeriodicalId":8359,"journal":{"name":"Archives of Virology","volume":"170 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Virology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00705-024-06210-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To battle seasonal outbreaks of influenza B virus infection, which continue to pose a major threat to world health, new and improved vaccines are urgently needed. In this article, we discuss the current state of next-generation influenza B vaccine development, including both advancements and challenges. This review covers the shortcomings of existing influenza vaccines and stresses the need for more-effective and broadly protective vaccines and more-easily scalable manufacturing processes. New possibilities for vaccine development have emerged due to recent technical developments such as virus-like particle (VLP) platforms, recombinant DNA technologies, and reverse genetics. By using these methods, vaccines can be developed that elicit stronger and longer-lasting immune responses against various strains of influenza B virus. Vaccines may be more effective and immunogenic when adjuvants and new delivery mechanisms are used. Progress has been made in the development of influenza B vaccine mRNA vaccines, nanoparticle-based vaccines, and vector-based vaccines. However, there are still several obstacles to overcome before next-generation influenza B vaccines can be widely used, including the challenge of antigenic drift, the extinction of the B/Yamagata lineage, and difficulties in strain selection. There are also other challenges related to public acceptance, vaccine distribution, manufacturing complexity, and regulations. To overcome these challenges, scientists, politicians, and pharmaceutical firms must work together to expedite the development and licensing of vaccines and the establishment of immunization programs. The need for constant monitoring and quick adaptation of vaccines to match the currently circulating strains is further highlighted by the appearance of novel influenza B virus variants. To be ready for future pandemics and influenza B outbreaks, we need better vaccines and better monitoring systems.
期刊介绍:
Archives of Virology publishes original contributions from all branches of research on viruses, virus-like agents, and virus infections of humans, animals, plants, insects, and bacteria. Coverage spans a broad spectrum of topics, from descriptions of newly discovered viruses, to studies of virus structure, composition, and genetics, to studies of virus interactions with host cells, organisms and populations. Studies employ molecular biologic, molecular genetics, and current immunologic and epidemiologic approaches. Contents include studies on the molecular pathogenesis, pathophysiology, and genetics of virus infections in individual hosts, and studies on the molecular epidemiology of virus infections in populations. Also included are studies involving applied research such as diagnostic technology development, monoclonal antibody panel development, vaccine development, and antiviral drug development.Archives of Virology wishes to publish obituaries of recently deceased well-known virologists and leading figures in virology.