{"title":"Dual-Band Photonic Filters With Wide Tunable Range Using Chirped Sampled Gratings","authors":"Simeng Zhu;Bocheng Yuan;Weiqing Cheng;Yizhe Fan;Yiming Sun;Mohanad Al-Rubaiee;Jehan Akbar;John Marsh;Lianping Hou","doi":"10.1109/LPT.2025.3525549","DOIUrl":null,"url":null,"abstract":"We have developed a photonic filter featuring dual independently tunable passbands. Employing the reconstruction equivalent-chirp technique, we designed linearly chirped sampled Bragg gratings with two equivalent phase shifts positioned at 1/3 and 2/3 of the cavity, thus introducing two passbands in the \n<inline-formula> <tex-math>$+ 1^{\\text {st}}$ </tex-math></inline-formula>\n channel. Leveraging the significant thermo-optic effect of silicon, dual-band tuning is achieved via micro-heaters integrated on the chip surface. By tuning the injection currents ranging from 0 to 35 mA into the micro-heaters, the filter exhibits a wide range of dual-wavelength filtering performance, with the frequency interval between the two passbands adjustable from 37.2 GHz to 186.1 GHz.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 3","pages":"169-172"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10820859/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We have developed a photonic filter featuring dual independently tunable passbands. Employing the reconstruction equivalent-chirp technique, we designed linearly chirped sampled Bragg gratings with two equivalent phase shifts positioned at 1/3 and 2/3 of the cavity, thus introducing two passbands in the
$+ 1^{\text {st}}$
channel. Leveraging the significant thermo-optic effect of silicon, dual-band tuning is achieved via micro-heaters integrated on the chip surface. By tuning the injection currents ranging from 0 to 35 mA into the micro-heaters, the filter exhibits a wide range of dual-wavelength filtering performance, with the frequency interval between the two passbands adjustable from 37.2 GHz to 186.1 GHz.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.