RFSoC Modulation Classification With Streaming CNN: Data Set Generation & Quantized-Aware Training

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Andrew Maclellan;Louise H. Crockett;Robert W. Stewart
{"title":"RFSoC Modulation Classification With Streaming CNN: Data Set Generation & Quantized-Aware Training","authors":"Andrew Maclellan;Louise H. Crockett;Robert W. Stewart","doi":"10.1109/OJCAS.2024.3509627","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel FPGA-based Convolutional Neural Network (CNN) architecture for continuous radio data processing, specifically targeting modulation classification on the Zynq UltraScale+ Radio Frequency System on Chip (RFSoC) operating in real-time. Evaluated on AMD’s RFSoC2x2 development board, the design integrates General Matrix Multiplication (GEMM) optimisations and fixed-point arithmetic. We also present a method for creating Deep Learning (DL) data sets for wireless communications, incorporating the RFSoC into the data generation loop. Furthermore, we explore quantised-aware training, producing three modulation classification models with different fixed-point weight precisions (16-bit, 8-bit, and 4-bit). We interface with the implemented hardware through the open-source PYNQ project, which combines Python with programmable logic interaction, enabling real-time modulation prediction via a PYNQ-enabled Jupyter app. The three models, operating at a 128 MHz sampling rate prior to the decimation stage, were evaluated for accuracy and resource consumption. The 16-bit model achieved the highest accuracy with minimal additional resource usage compared to the 8-bit and 4-bit models, making it the optimal choice for deploying a modulation classifier at the receiver.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"38-49"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772713","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772713/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel FPGA-based Convolutional Neural Network (CNN) architecture for continuous radio data processing, specifically targeting modulation classification on the Zynq UltraScale+ Radio Frequency System on Chip (RFSoC) operating in real-time. Evaluated on AMD’s RFSoC2x2 development board, the design integrates General Matrix Multiplication (GEMM) optimisations and fixed-point arithmetic. We also present a method for creating Deep Learning (DL) data sets for wireless communications, incorporating the RFSoC into the data generation loop. Furthermore, we explore quantised-aware training, producing three modulation classification models with different fixed-point weight precisions (16-bit, 8-bit, and 4-bit). We interface with the implemented hardware through the open-source PYNQ project, which combines Python with programmable logic interaction, enabling real-time modulation prediction via a PYNQ-enabled Jupyter app. The three models, operating at a 128 MHz sampling rate prior to the decimation stage, were evaluated for accuracy and resource consumption. The 16-bit model achieved the highest accuracy with minimal additional resource usage compared to the 8-bit and 4-bit models, making it the optimal choice for deploying a modulation classifier at the receiver.
流CNN的RFSoC调制分类:数据集生成和量化感知训练
本文介绍了一种新颖的基于fpga的卷积神经网络(CNN)架构,用于连续无线电数据处理,特别是针对实时运行的Zynq UltraScale+射频系统芯片(RFSoC)的调制分类。在AMD的RFSoC2x2开发板上进行评估,该设计集成了通用矩阵乘法(GEMM)优化和定点算法。我们还提出了一种为无线通信创建深度学习(DL)数据集的方法,将RFSoC纳入数据生成循环。此外,我们探索了量化感知训练,产生了三种具有不同定点权重精度的调制分类模型(16位,8位和4位)。我们通过开源PYNQ项目与实现的硬件进行接口,该项目将Python与可编程逻辑交互相结合,通过启用PYNQ的Jupyter应用程序实现实时调制预测。在抽取阶段之前,以128 MHz采样率运行的三种模型对准确性和资源消耗进行了评估。与8位和4位模型相比,16位模型以最小的额外资源使用实现了最高的精度,使其成为在接收器上部署调制分类器的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信