{"title":"Piecewise Student's t-distribution Mixture Model-Based Estimation for NAND Flash Memory Channels","authors":"Cheng Wang;Zhen Mei;Jun Li;Kui Cai;Lingjun Kong","doi":"10.1109/LSP.2024.3521326","DOIUrl":null,"url":null,"abstract":"Accurate modeling and estimation of the threshold voltages of the flash memory can facilitate the efficient design of channel codes and detectors. However, most flash memory channel models are based on Gaussian distributions, which fail to capture certain key properties of the threshold voltages, such as their heavy-tails. To enhance the model accuracy, we first propose a piecewise student's t-distribution mixture model (PSTMM), which features degrees of freedom to control the left and right tails of the voltage distributions. We further propose an PSTMM based expectation maximization (PSTMM-EM) algorithm to estimate model parameters for flash memories by alternately computing the expected values of the missing data and maximizing the likelihood function with respect to the model parameters. Simulation results demonstrate that our proposed algorithm exhibits superior stability and can effectively extend the flash memory lifespan by 1700 program/erase (PE) cycles compared with the existing parameter estimation algorithms.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"451-455"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10829389/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate modeling and estimation of the threshold voltages of the flash memory can facilitate the efficient design of channel codes and detectors. However, most flash memory channel models are based on Gaussian distributions, which fail to capture certain key properties of the threshold voltages, such as their heavy-tails. To enhance the model accuracy, we first propose a piecewise student's t-distribution mixture model (PSTMM), which features degrees of freedom to control the left and right tails of the voltage distributions. We further propose an PSTMM based expectation maximization (PSTMM-EM) algorithm to estimate model parameters for flash memories by alternately computing the expected values of the missing data and maximizing the likelihood function with respect to the model parameters. Simulation results demonstrate that our proposed algorithm exhibits superior stability and can effectively extend the flash memory lifespan by 1700 program/erase (PE) cycles compared with the existing parameter estimation algorithms.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.