Martín Bayón-Gutiérrez;Natalia Prieto-Fernández;María Teresa García-Ordás;José Alberto Benítez-Andrades;Héctor Alaiz-Moretón;Giorgio Grisetti
{"title":"CAD2SLAM: Adaptive Projection Between CAD Blueprints and SLAM Maps","authors":"Martín Bayón-Gutiérrez;Natalia Prieto-Fernández;María Teresa García-Ordás;José Alberto Benítez-Andrades;Héctor Alaiz-Moretón;Giorgio Grisetti","doi":"10.1109/LRA.2024.3522838","DOIUrl":null,"url":null,"abstract":"Robotic mobile platforms are key building blocks for numerous applications and cooperation between robots and humans is a key aspect to enhance productivity and reduce labor cost. To operate safely, robots typically rely on a custom map of the environment that depends on the sensor configuration of the platform. In contrast, blueprints stand as an abstract representation of the environment. The use of both CAD and SLAM maps allows robots to collaborate using the blueprint as a common language, while also easing the control for non-robotics experts. In this work we present an adaptive system to project a 2D pose in the blueprint to the SLAM map and vice-versa. Previous work in the literature aims at morphing a SLAM map to a previously available map. In contrast, \n<italic>CAD2SLAM</i>\n does not alter the internal map representation used by the SLAM and localization algorithms running on the robot, preserving its original properties. We believe that our system is beneficial for the control and supervision of multiple heterogeneous robotic platforms that are monitored and controlled through the CAD map. Finally, we present a set of experiments that support our claims as well as open-source implementation.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1529-1536"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816387","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816387/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Robotic mobile platforms are key building blocks for numerous applications and cooperation between robots and humans is a key aspect to enhance productivity and reduce labor cost. To operate safely, robots typically rely on a custom map of the environment that depends on the sensor configuration of the platform. In contrast, blueprints stand as an abstract representation of the environment. The use of both CAD and SLAM maps allows robots to collaborate using the blueprint as a common language, while also easing the control for non-robotics experts. In this work we present an adaptive system to project a 2D pose in the blueprint to the SLAM map and vice-versa. Previous work in the literature aims at morphing a SLAM map to a previously available map. In contrast,
CAD2SLAM
does not alter the internal map representation used by the SLAM and localization algorithms running on the robot, preserving its original properties. We believe that our system is beneficial for the control and supervision of multiple heterogeneous robotic platforms that are monitored and controlled through the CAD map. Finally, we present a set of experiments that support our claims as well as open-source implementation.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.