Randomized Self-Structuring Adaptive Neuro-Fuzzy Based Induction Motor Drives with Optimized FOPI Gains

Pudari Mahesh;Sabha Raj Arya
{"title":"Randomized Self-Structuring Adaptive Neuro-Fuzzy Based Induction Motor Drives with Optimized FOPI Gains","authors":"Pudari Mahesh;Sabha Raj Arya","doi":"10.24295/CPSSTPEA.2024.00026","DOIUrl":null,"url":null,"abstract":"This paper describes the randomized evolving Takagi-Sugeno (ReTSK)-adaptive neuro-fuzzy (ANF) estimation algorithm and optimized fractional-order proportional integral (FOPI) controller are integrated with parameter adaptive indirect vector control (PA-IVC) for induction motor drives performance enhancement. For appropriate slip-speed tuning and field orientation, the machine learning-based ReTSK-ANF approach is proposed for the estimation of induction motor parameters and sensorless speed. The optimized FOPI speed and current regulators are employed in PA-IVC to generate the reference signals with minimized error for encountering manual tuning and reduce the overshoot with less settling time. A metaheuristic algorithm of Gazelle optimization algorithm (GOA) is imposed, to obtain the optimal weight, biases, membership functions (MFs), and MF rules in the predicative model of ReTSK-ANF for desired parameter estimation and optimal gains of FOPI for performance enhancement. Statistical metrics are carried out to examine the performance of ReTSK forecasting model. The metrics are mean square error (MSE), root mean square error (RMSE), mean error (ME), and error of standard deviation (ESD) as reportd during the training stage, were 3.33e-3, 3.41e-2, 1.92e-3, 3.37e-2, and during the testing stage 3.67e-3, 3.47e-2, 1.91e-3, 3.42e-2. This will confirm that the ReTSK-ANF estimator will achieve significant improvement in the estimation of parameters and closely follow the reference. Meanwhile, the optimized FOPI gains performance is analyzed using time response analysis.","PeriodicalId":100339,"journal":{"name":"CPSS Transactions on Power Electronics and Applications","volume":"9 4","pages":"465-475"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829710","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPSS Transactions on Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10829710/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the randomized evolving Takagi-Sugeno (ReTSK)-adaptive neuro-fuzzy (ANF) estimation algorithm and optimized fractional-order proportional integral (FOPI) controller are integrated with parameter adaptive indirect vector control (PA-IVC) for induction motor drives performance enhancement. For appropriate slip-speed tuning and field orientation, the machine learning-based ReTSK-ANF approach is proposed for the estimation of induction motor parameters and sensorless speed. The optimized FOPI speed and current regulators are employed in PA-IVC to generate the reference signals with minimized error for encountering manual tuning and reduce the overshoot with less settling time. A metaheuristic algorithm of Gazelle optimization algorithm (GOA) is imposed, to obtain the optimal weight, biases, membership functions (MFs), and MF rules in the predicative model of ReTSK-ANF for desired parameter estimation and optimal gains of FOPI for performance enhancement. Statistical metrics are carried out to examine the performance of ReTSK forecasting model. The metrics are mean square error (MSE), root mean square error (RMSE), mean error (ME), and error of standard deviation (ESD) as reportd during the training stage, were 3.33e-3, 3.41e-2, 1.92e-3, 3.37e-2, and during the testing stage 3.67e-3, 3.47e-2, 1.91e-3, 3.42e-2. This will confirm that the ReTSK-ANF estimator will achieve significant improvement in the estimation of parameters and closely follow the reference. Meanwhile, the optimized FOPI gains performance is analyzed using time response analysis.
具有优化FOPI增益的随机自结构自适应神经模糊感应电机驱动
本文将随机进化Takagi-Sugeno (ReTSK)-自适应神经模糊(ANF)估计算法和优化分数阶比例积分(FOPI)控制器与参数自适应间接矢量控制(PA-IVC)相结合,用于提高感应电机驱动性能。为了进行适当的滑移速度调整和磁场定向,提出了基于机器学习的ReTSK-ANF方法来估计感应电机参数和无传感器速度。在PA-IVC中采用优化后的FOPI速度和电流调节器,在遇到手动调谐时产生误差最小的参考信号,并以较少的沉降时间减少超调量。引入Gazelle优化算法(GOA)的元启发式算法,获得ReTSK-ANF预测模型中最优的权重、偏置、隶属函数(MF)和MF规则,用于所需参数估计和FOPI的最优增益,以提高性能。采用统计度量来检验ReTSK预测模型的性能。训练阶段报告的指标为均方误差(MSE)、均方根误差(RMSE)、均方误差(ME)和标准差误差(ESD),分别为3.33e-3、3.41e-2、1.92e-3、3.37e-2,测试阶段报告的指标为3.67e-3、3.47e-2、1.91e-3、3.42e-2。这将证实ReTSK-ANF估计器将在参数估计方面取得显著改进,并密切遵循参考文献。同时,利用时间响应分析对优化后的FOPI增益性能进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信