{"title":"An Energy-Efficient Pipeline-SAR ADC Using Linearized Dynamic Amplifiers and Input Buffer in 22nm FDSOI","authors":"Bangda Yang;Trevor Caldwell;Anthony Chan Carusone","doi":"10.1109/OJCAS.2024.3509746","DOIUrl":null,"url":null,"abstract":"Recently, dynamic amplifier (DA) has emerged as a popular alternative to static current closed-loop operational transconductance amplifier (OTA) due to their highly power-efficient integration-based settling, with the main limitation being their linearity performance. We present a DA that achieves −52 dB in total harmonic distortion (THD) through an analog technique by which the expanding and compressing nonlinearities in the input transistors cancel one another. A pipeline-SAR analog-to-digital converter (ADC) incorporating the linearized DA in both the input buffer and the first residue amplifier (RA) stage was designed and fabricated using the GlobalFoundries 22nm fully depleted silicon-on-insulator (FDSOI) process. Measurements showed the ADC achieved a signal-to-noise-distortion ratio (SNDR) of 37 dB at 920 MS/s consuming a total power of 1.8mW for a Walden FOM (FOMW) of 34.9 fJ/conv. With the input buffer, the achieved FOMW is 68.4 fJ/conv. The linearization technique provided a 8 dB improvement in SNDR at its optimal biasing with a negligible power overhead of approximately 5%. In general, it is expected that an 8 dB SNDR improvement would require 2.5 times the power consumption for a mismatch-limited design (Walden FOM) or 6.3 times the power for a noise-limited design (Schreier FOM).","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"50-62"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10774063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10774063/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, dynamic amplifier (DA) has emerged as a popular alternative to static current closed-loop operational transconductance amplifier (OTA) due to their highly power-efficient integration-based settling, with the main limitation being their linearity performance. We present a DA that achieves −52 dB in total harmonic distortion (THD) through an analog technique by which the expanding and compressing nonlinearities in the input transistors cancel one another. A pipeline-SAR analog-to-digital converter (ADC) incorporating the linearized DA in both the input buffer and the first residue amplifier (RA) stage was designed and fabricated using the GlobalFoundries 22nm fully depleted silicon-on-insulator (FDSOI) process. Measurements showed the ADC achieved a signal-to-noise-distortion ratio (SNDR) of 37 dB at 920 MS/s consuming a total power of 1.8mW for a Walden FOM (FOMW) of 34.9 fJ/conv. With the input buffer, the achieved FOMW is 68.4 fJ/conv. The linearization technique provided a 8 dB improvement in SNDR at its optimal biasing with a negligible power overhead of approximately 5%. In general, it is expected that an 8 dB SNDR improvement would require 2.5 times the power consumption for a mismatch-limited design (Walden FOM) or 6.3 times the power for a noise-limited design (Schreier FOM).