Federated Learning for 6G Networks: Navigating Privacy Benefits and Challenges

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chamara Sandeepa;Engin Zeydan;Tharaka Samarasinghe;Madhusanka Liyanage
{"title":"Federated Learning for 6G Networks: Navigating Privacy Benefits and Challenges","authors":"Chamara Sandeepa;Engin Zeydan;Tharaka Samarasinghe;Madhusanka Liyanage","doi":"10.1109/OJCOMS.2024.3513832","DOIUrl":null,"url":null,"abstract":"The upcoming Sixth Generation (6G) networks aim for fully automated, intelligent network functionalities and services. Therefore, Machine Learning (ML) is essential for these networks. Given stringent privacy regulations, future network architectures should use privacy-preserved ML for their applications and services. Federated Learning (FL) is expected to play an important role as a popular approach for distributed ML, as it protects privacy by design. However, many practical challenges exist before FL can be fully utilized as a key technology for these future networks. We consider the vision of a 6G layered architecture to evaluate the applicability of FL-based distributed intelligence. In this paper, we highlight the benefits of using FL for 6G and the main challenges and issues involved. We also discuss the existing solutions and the possible future directions that should be taken toward more robust and trustworthy FL for future networks.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"90-129"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786352","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10786352/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The upcoming Sixth Generation (6G) networks aim for fully automated, intelligent network functionalities and services. Therefore, Machine Learning (ML) is essential for these networks. Given stringent privacy regulations, future network architectures should use privacy-preserved ML for their applications and services. Federated Learning (FL) is expected to play an important role as a popular approach for distributed ML, as it protects privacy by design. However, many practical challenges exist before FL can be fully utilized as a key technology for these future networks. We consider the vision of a 6G layered architecture to evaluate the applicability of FL-based distributed intelligence. In this paper, we highlight the benefits of using FL for 6G and the main challenges and issues involved. We also discuss the existing solutions and the possible future directions that should be taken toward more robust and trustworthy FL for future networks.
6G网络的联邦学习:导航隐私的好处和挑战
即将到来的第六代(6G)网络旨在实现全自动、智能的网络功能和服务。因此,机器学习(ML)对这些网络至关重要。鉴于严格的隐私法规,未来的网络架构应该在其应用程序和服务中使用保护隐私的ML。联邦学习(FL)有望作为分布式机器学习的流行方法发挥重要作用,因为它通过设计来保护隐私。然而,在FL作为这些未来网络的关键技术得到充分利用之前,还存在许多实际挑战。我们考虑了6G分层架构的愿景,以评估基于fl的分布式智能的适用性。在本文中,我们强调了在6G中使用FL的好处以及所涉及的主要挑战和问题。我们还讨论了现有的解决方案和未来可能采取的方向,以便为未来的网络提供更强大和更可靠的FL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信