Mittag-Leffler Stability of Homogeneous Fractional-Order Systems With Delay

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Nguyen Thi Lien;Le Van Hien;Nguyen Nhu Thang
{"title":"Mittag-Leffler Stability of Homogeneous Fractional-Order Systems With Delay","authors":"Nguyen Thi Lien;Le Van Hien;Nguyen Nhu Thang","doi":"10.1109/LCSYS.2024.3523432","DOIUrl":null,"url":null,"abstract":"This note is concerned with a class of homogeneous cooperative systems with bounded time-varying delays described by the Caputo fractional derivative. We focus on the existence, uniqueness, and Mittag-Leffler stability of positive solutions when the associated vector fields are homogeneous with a degree less than or equal to one. Specifically, the solvability is first exploited through the fixed point theory, leveraging the homogeneity of nonlinear terms. Then, a delay-independent condition for Mittag-Leffler stability is established by utilizing the properties of Mittag-Leffler functions and the comparison principle. Finally, the theoretical results are validated by a given numerical example.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3243-3248"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816692/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This note is concerned with a class of homogeneous cooperative systems with bounded time-varying delays described by the Caputo fractional derivative. We focus on the existence, uniqueness, and Mittag-Leffler stability of positive solutions when the associated vector fields are homogeneous with a degree less than or equal to one. Specifically, the solvability is first exploited through the fixed point theory, leveraging the homogeneity of nonlinear terms. Then, a delay-independent condition for Mittag-Leffler stability is established by utilizing the properties of Mittag-Leffler functions and the comparison principle. Finally, the theoretical results are validated by a given numerical example.
具有时滞齐次分数阶系统的Mittag-Leffler稳定性
研究一类由Caputo分数阶导数所描述的具有有界时变时滞的齐次合作系统。研究了相关向量场齐次小于等于1时正解的存在性、唯一性和Mittag-Leffler稳定性。具体而言,首先通过不动点理论利用非线性项的齐次性来利用可解性。然后,利用Mittag-Leffler函数的性质和比较原理,建立了Mittag-Leffler稳定性的时滞无关条件。最后,通过算例对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信