Giovanna Amorim;Anastasia Bizyaeva;Alessio Franci;Naomi Ehrich Leonard
{"title":"Spatially-Invariant Opinion Dynamics on the Circle","authors":"Giovanna Amorim;Anastasia Bizyaeva;Alessio Franci;Naomi Ehrich Leonard","doi":"10.1109/LCSYS.2024.3523466","DOIUrl":null,"url":null,"abstract":"We propose and analyze a nonlinear opinion dynamics model for an agent making decisions about a continuous distribution of options in the presence of input. Inspired by perceptual decision-making, we develop new theory for opinion formation in response to inputs about options distributed on the circle. Options on the circle can represent, e.g., the possible directions of perceived objects and resulting heading directions in planar robotic navigation problems. Interactions among options are encoded through a spatially invariant kernel, which we design to ensure that only a small (finite) subset of options can be favored over the continuum. We leverage the spatial invariance of the model linearization to design flexible, distributed opinion-forming behaviors using spatiotemporal frequency domain and bifurcation analysis. We illustrate our model’s versatility with an application to robotic navigation in crowded spaces.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3231-3236"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816686/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose and analyze a nonlinear opinion dynamics model for an agent making decisions about a continuous distribution of options in the presence of input. Inspired by perceptual decision-making, we develop new theory for opinion formation in response to inputs about options distributed on the circle. Options on the circle can represent, e.g., the possible directions of perceived objects and resulting heading directions in planar robotic navigation problems. Interactions among options are encoded through a spatially invariant kernel, which we design to ensure that only a small (finite) subset of options can be favored over the continuum. We leverage the spatial invariance of the model linearization to design flexible, distributed opinion-forming behaviors using spatiotemporal frequency domain and bifurcation analysis. We illustrate our model’s versatility with an application to robotic navigation in crowded spaces.