{"title":"A Study on the Optimality of Downlink Hybrid NOMA","authors":"Zhiguo Ding","doi":"10.1109/LSP.2024.3524096","DOIUrl":null,"url":null,"abstract":"The key idea of hybrid non-orthogonal multiple access (NOMA) is to allow users to use the bandwidth resources to which they cannot have access in orthogonal multiple access (OMA) based legacy networks while still guaranteeing its compatibility with the legacy network. However, in a conventional hybrid NOMA downlink network, some users have access to more bandwidth resources than others, which leads to a potential performance loss. So what if the users can access the same amount of bandwidth resources? This letter focuses on a simple two-user scenario, and develops analytical and simulation results to reveal that for this considered scenario, conventional hybrid NOMA is still an optimal transmission strategy.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"511-515"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10824682/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The key idea of hybrid non-orthogonal multiple access (NOMA) is to allow users to use the bandwidth resources to which they cannot have access in orthogonal multiple access (OMA) based legacy networks while still guaranteeing its compatibility with the legacy network. However, in a conventional hybrid NOMA downlink network, some users have access to more bandwidth resources than others, which leads to a potential performance loss. So what if the users can access the same amount of bandwidth resources? This letter focuses on a simple two-user scenario, and develops analytical and simulation results to reveal that for this considered scenario, conventional hybrid NOMA is still an optimal transmission strategy.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.