{"title":"Optimal Transmission Schedule With Privacy Preservation for Cyber-Physical System Against Eavesdropping Attack","authors":"Zengwang Jin;Menglu Ma;Zhen Wang;Changyin Sun","doi":"10.1109/LSP.2024.3514793","DOIUrl":null,"url":null,"abstract":"Privacy issues in remote state estimation for Cyber-Physical System (CPS) against eavesdropping attack pose significant challenges in ensuring both system performance and data security. Existing studies often overlook the challenges posed by the acknowledgment signal's potential risks and the asymptotic convergence properties of stable systems. To address these challenges, this paper proposes a privacy-preserving optimal transmission scheduling method based on a pre-arranged indicator. The method determines whether to transmit real state estimates or artificial noise by solving an optimization problem that balances estimation performance and privacy preservation. The privacy is ensured by keeping the eavesdropper's estimation error covariance higher than the legitimate estimator's. A threshold structure is proved with theoretical derivations. Simulation results are given to support the theoretical analysis.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"436-440"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10787385/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Privacy issues in remote state estimation for Cyber-Physical System (CPS) against eavesdropping attack pose significant challenges in ensuring both system performance and data security. Existing studies often overlook the challenges posed by the acknowledgment signal's potential risks and the asymptotic convergence properties of stable systems. To address these challenges, this paper proposes a privacy-preserving optimal transmission scheduling method based on a pre-arranged indicator. The method determines whether to transmit real state estimates or artificial noise by solving an optimization problem that balances estimation performance and privacy preservation. The privacy is ensured by keeping the eavesdropper's estimation error covariance higher than the legitimate estimator's. A threshold structure is proved with theoretical derivations. Simulation results are given to support the theoretical analysis.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.