TripletLoc: One-Shot Global Localization Using Semantic Triplet in Urban Environments

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Weixin Ma;Huan Yin;Patricia J. Y. Wong;Danwei Wang;Yuxiang Sun;Zhongqing Su
{"title":"TripletLoc: One-Shot Global Localization Using Semantic Triplet in Urban Environments","authors":"Weixin Ma;Huan Yin;Patricia J. Y. Wong;Danwei Wang;Yuxiang Sun;Zhongqing Su","doi":"10.1109/LRA.2024.3523228","DOIUrl":null,"url":null,"abstract":"This study presents a system, TripletLoc, for fast and robust global registration of a single LiDAR scan to a large-scale reference map. In contrast to conventional methods using place recognition and point cloud registration, TripletLoc directly generates correspondences on lightweight semantics, which is close to how humans perceive the world. Specifically, TripletLoc first respectively extracts instances from the single query scan and the large-scale reference map to construct two semantic graphs. Then, a novel semantic triplet-based histogram descriptor is designed to achieve instance-level matching between the query scan and the reference map. Graph-theoretic outlier pruning is leveraged to obtain inlier correspondences from raw instance-to-instance correspondences for robust 6-DoF pose estimation. In addition, a novel Road Surface Normal (RSN) map is proposed to provide a prior rotation constraint to further enhance pose estimation. We evaluate TripletLoc extensively on a large-scale public dataset, HeliPR, which covers diverse and complex scenarios in urban environments. Experimental results demonstrate that TripletLoc could achieve fast and robust global localization under diverse and challenging environments, with high memory efficiency.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1569-1576"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816460/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a system, TripletLoc, for fast and robust global registration of a single LiDAR scan to a large-scale reference map. In contrast to conventional methods using place recognition and point cloud registration, TripletLoc directly generates correspondences on lightweight semantics, which is close to how humans perceive the world. Specifically, TripletLoc first respectively extracts instances from the single query scan and the large-scale reference map to construct two semantic graphs. Then, a novel semantic triplet-based histogram descriptor is designed to achieve instance-level matching between the query scan and the reference map. Graph-theoretic outlier pruning is leveraged to obtain inlier correspondences from raw instance-to-instance correspondences for robust 6-DoF pose estimation. In addition, a novel Road Surface Normal (RSN) map is proposed to provide a prior rotation constraint to further enhance pose estimation. We evaluate TripletLoc extensively on a large-scale public dataset, HeliPR, which covers diverse and complex scenarios in urban environments. Experimental results demonstrate that TripletLoc could achieve fast and robust global localization under diverse and challenging environments, with high memory efficiency.
TripletLoc:在城市环境中使用语义三重体的一次性全局定位
本研究提出了一个系统,TripletLoc,用于快速和强大的单激光雷达扫描到大比照参考地图的全球配准。与使用位置识别和点云配准的传统方法相比,TripletLoc直接在轻量级语义上生成对应,这接近于人类感知世界的方式。具体来说,TripletLoc首先分别从单个查询扫描和大规模参考映射中提取实例,构建两个语义图。然后,设计了一种新的基于语义三元组的直方图描述符,实现查询扫描与参考映射之间的实例级匹配。利用图论的离群值修剪从原始实例到实例的对应中获得更早的对应,用于稳健的6自由度姿态估计。此外,提出了一种新的道路表面法线(RSN)地图,以提供先验旋转约束,进一步增强姿态估计。我们在大型公共数据集HeliPR上对TripletLoc进行了广泛的评估,该数据集涵盖了城市环境中多种复杂的场景。实验结果表明,TripletLoc能够在多样化和具有挑战性的环境下实现快速、鲁棒的全局定位,并具有较高的存储效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信