Integrating Aerogel into van der Waals Crystals for a High-Strength Thermal Insulator

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Seokmin Park, Sunghwan Hong, Taehoon Kim, Donghoon Oh, Hong Choi, Kyu-Yeon Lee, Jiseung Kim, Daewoo Suh, Yeon-Kyoung Jung, Shinill Kang, Hyung-Ho Park, Jungsoo Lim, Wooyoung Shim
{"title":"Integrating Aerogel into van der Waals Crystals for a High-Strength Thermal Insulator","authors":"Seokmin Park, Sunghwan Hong, Taehoon Kim, Donghoon Oh, Hong Choi, Kyu-Yeon Lee, Jiseung Kim, Daewoo Suh, Yeon-Kyoung Jung, Shinill Kang, Hyung-Ho Park, Jungsoo Lim, Wooyoung Shim","doi":"10.1021/acs.nanolett.4c04767","DOIUrl":null,"url":null,"abstract":"Achieving low thermal conductivity and high mechanical strength presents a material design challenge due to intrinsic trade-offs, such as the aerogel’s porosity, impeding applications in construction, industry, and aerospace. This study presents a composite that incorporates a silica aerogel within a thermally expanded 2D layered vermiculite matrix. This design overcomes limitations imposed by van der Waals bonding lengths, typically less than 10 Å, which hinder aerogel integration with van der Waals crystals. Our method employs a thermal spark reaction to expand the vermiculite interlayer space, allowing aerogel incorporation. This maintains aerogel’s intrinsic low thermal conductivity of 29.6 mW m<sup>–1</sup> K<sup>–1</sup>, while enhancing its Young’s modulus to 66.0 MPa─a more than 10<sup>3</sup>-fold increase over pure aerogel. The innovative embedding of aerogels within van der Waals crystals marks a significant advancement in high-strength insulation technology, paving the way for development in demanding environments that require thermal management without compromising structural integrity.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"204 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04767","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving low thermal conductivity and high mechanical strength presents a material design challenge due to intrinsic trade-offs, such as the aerogel’s porosity, impeding applications in construction, industry, and aerospace. This study presents a composite that incorporates a silica aerogel within a thermally expanded 2D layered vermiculite matrix. This design overcomes limitations imposed by van der Waals bonding lengths, typically less than 10 Å, which hinder aerogel integration with van der Waals crystals. Our method employs a thermal spark reaction to expand the vermiculite interlayer space, allowing aerogel incorporation. This maintains aerogel’s intrinsic low thermal conductivity of 29.6 mW m–1 K–1, while enhancing its Young’s modulus to 66.0 MPa─a more than 103-fold increase over pure aerogel. The innovative embedding of aerogels within van der Waals crystals marks a significant advancement in high-strength insulation technology, paving the way for development in demanding environments that require thermal management without compromising structural integrity.

Abstract Image

将气凝胶集成到范德华晶体中用于高强度隔热材料
由于固有的权衡,例如气凝胶的孔隙率,实现低导热性和高机械强度给材料设计带来了挑战,阻碍了气凝胶在建筑、工业和航空航天领域的应用。本研究提出了一种复合材料,将二氧化硅气凝胶纳入热膨胀的二维层状蛭石基质中。这种设计克服了范德华键长度的限制,通常小于10 Å,这阻碍了气凝胶与范德华晶体的整合。我们的方法采用热火花反应来扩大蛭石层间空间,允许气凝胶掺入。这使气凝胶保持了29.6 mW m-1 K-1的固有低导热系数,同时将其杨氏模量提高到66.0 MPa,比纯气凝胶增加了103倍以上。将气凝胶创新性地嵌入到范德华晶体中,标志着高强度隔热技术的重大进步,为在不影响结构完整性的情况下进行热管理的苛刻环境的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信