Precise Manipulation on the Structural Defects of Poly (Triazine Imide) Single Crystals for Efficient Photocatalytic Overall Water Splitting

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hangyu Zhuzhang, Xiaocong Liang, Jiaxiang Li, Sikang Xue, Yifan Lin, Baisheng Sa, Sibo Wang, Guigang Zhang, Zhiyang Yu, Xinchen Wang
{"title":"Precise Manipulation on the Structural Defects of Poly (Triazine Imide) Single Crystals for Efficient Photocatalytic Overall Water Splitting","authors":"Hangyu Zhuzhang, Xiaocong Liang, Jiaxiang Li, Sikang Xue, Yifan Lin, Baisheng Sa, Sibo Wang, Guigang Zhang, Zhiyang Yu, Xinchen Wang","doi":"10.1002/anie.202421861","DOIUrl":null,"url":null,"abstract":"Conjugated polymers, represented by polymeric carbon nitrides (PCNs), have risen to prominence as new-generation photocatalysts for overall water splitting (OWS). Despite considerable efforts, achieving highly crystalline PCNs with minimal structural defects remains a great challenge, and it is also difficult to examine the exact impact of complex defect states on OWS process, which largely limits their quantum efficiency. Herein, we devise a ‘in-situ salt flux’ assisted copolymerization protocol by using nitrogen-rich and nitrogen-deficient monomers to precisely manipulate the structural defects of poly (triazine imide) (PTI) single crystals. Stoichiometric control between two comonomers enables continuous tunning of carbon- and nitrogen-vacancies within PTI, allowing the construction of a series of PTI crystals with different defect states. Theoretical and experimental results unveil the carbon vacancies are related with the radiative decay of excitons, while the nonradiative decay is mainly derived from the nitrogen vacancies. Owing to the effective suppression of both radiative and nonradiative losses, the as-synthesized PTI achieves a record apparent quantum efficiency of 37.8% by one-step-excitation OWS. This work highlights the significance of rational control of the structural defects and describes clear structure-property-activity relationships in PTI photocatalyst, offering guidance for the development of polymer photocatalysts for solar fuel production.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"83 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421861","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conjugated polymers, represented by polymeric carbon nitrides (PCNs), have risen to prominence as new-generation photocatalysts for overall water splitting (OWS). Despite considerable efforts, achieving highly crystalline PCNs with minimal structural defects remains a great challenge, and it is also difficult to examine the exact impact of complex defect states on OWS process, which largely limits their quantum efficiency. Herein, we devise a ‘in-situ salt flux’ assisted copolymerization protocol by using nitrogen-rich and nitrogen-deficient monomers to precisely manipulate the structural defects of poly (triazine imide) (PTI) single crystals. Stoichiometric control between two comonomers enables continuous tunning of carbon- and nitrogen-vacancies within PTI, allowing the construction of a series of PTI crystals with different defect states. Theoretical and experimental results unveil the carbon vacancies are related with the radiative decay of excitons, while the nonradiative decay is mainly derived from the nitrogen vacancies. Owing to the effective suppression of both radiative and nonradiative losses, the as-synthesized PTI achieves a record apparent quantum efficiency of 37.8% by one-step-excitation OWS. This work highlights the significance of rational control of the structural defects and describes clear structure-property-activity relationships in PTI photocatalyst, offering guidance for the development of polymer photocatalysts for solar fuel production.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信