Mastering the Copolymerization Behavior of Ethyl Cyanoacrylate as Gel Polymer Electrolyte for Lithium-metal Battery Application

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weixing Min, Lengwan Li, Mingli Wang, Shuaijiang Ma, Hao Feng, Weirong Wang, Hang Ding, Tianhui Cheng, Zhenxi Li, Tomonori Saito, Huabin Yang, Peng-Fei Cao
{"title":"Mastering the Copolymerization Behavior of Ethyl Cyanoacrylate as Gel Polymer Electrolyte for Lithium-metal Battery Application","authors":"Weixing Min, Lengwan Li, Mingli Wang, Shuaijiang Ma, Hao Feng, Weirong Wang, Hang Ding, Tianhui Cheng, Zhenxi Li, Tomonori Saito, Huabin Yang, Peng-Fei Cao","doi":"10.1002/anie.202422510","DOIUrl":null,"url":null,"abstract":"Polymers with strong electron-withdrawing groups (e.g., cyano-containing polymers) are attractive for a wide range of applications due to their high dielectric constant and outstanding electrochemical stability. However, the polymerization of such monomers is difficult to control with trace of water affording instant reactions, and copolymerization with other monomers without using strong acid is even more challenging. The present study demonstrates a facile approach enabling efficient and controllable copolymerization of ethyl cyanoacrylate (ECA) without adding undesired additives, achieving mechanically robust and high ion-conduction gel polymer electrolyte (GPE) for safe and long cycle-life lithium-metal batteries (LMBs). The incorporated dual-lithium salts, i.e., lithium difluoro(oxalato)borate (LiDFOB) and lithium bis(trifluoromethanesulphonyl)imide (LiTFSI) not only facilitate radical polymerization of ECA monomers by suppressing their anionic polymerization, but also promote the formation of high-ionic conducting GPE. The incorporated methyl methacrylate (MMA) monomer accelerates the radical polymerization of ECA (confirmed by DFT calculations), achieving controlled copolymerization of ECA-based copolymers. The mechanically robust polymer network made by the ECA copolymer enables LMBs with both LFP cathodes and high-voltage LCO cathodes (4.5 V) operatable at different temperatures with ultra-long cycle life at 1 C (capacity retention of 81.1% and 83.8%, respectively, over 1000 cycles).","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"20 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymers with strong electron-withdrawing groups (e.g., cyano-containing polymers) are attractive for a wide range of applications due to their high dielectric constant and outstanding electrochemical stability. However, the polymerization of such monomers is difficult to control with trace of water affording instant reactions, and copolymerization with other monomers without using strong acid is even more challenging. The present study demonstrates a facile approach enabling efficient and controllable copolymerization of ethyl cyanoacrylate (ECA) without adding undesired additives, achieving mechanically robust and high ion-conduction gel polymer electrolyte (GPE) for safe and long cycle-life lithium-metal batteries (LMBs). The incorporated dual-lithium salts, i.e., lithium difluoro(oxalato)borate (LiDFOB) and lithium bis(trifluoromethanesulphonyl)imide (LiTFSI) not only facilitate radical polymerization of ECA monomers by suppressing their anionic polymerization, but also promote the formation of high-ionic conducting GPE. The incorporated methyl methacrylate (MMA) monomer accelerates the radical polymerization of ECA (confirmed by DFT calculations), achieving controlled copolymerization of ECA-based copolymers. The mechanically robust polymer network made by the ECA copolymer enables LMBs with both LFP cathodes and high-voltage LCO cathodes (4.5 V) operatable at different temperatures with ultra-long cycle life at 1 C (capacity retention of 81.1% and 83.8%, respectively, over 1000 cycles).
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信