{"title":"An Alternative Hypothesis on Enhanced Deep Supercooling of Water: Nucleator Inhibition via Bicarbonate Adsorption","authors":"François Ganachaud","doi":"10.1021/acs.jpclett.4c03364","DOIUrl":null,"url":null,"abstract":"Supercooling allows for retarding water crystallization toward negative Celsius temperatures. Previous findings of CO<sub>2</sub> molecules shifting into bicarbonate species upon freezing, the latter which naturally adsorb on hydrophobic interfaces, are put in perspective here to interpret earlier published data. Since it has been shown that ice nucleation is unlikely on negatively charged surfaces, I propose that bicarbonates adsorb on most solid particles present in water that act as nucleators, thus retarding freezing and enhancing supercooling. This hypothesis can now explain the deep supercooling observed for sealed and boiled water samples and oil-topped water samples, promoting both more bicarbonate generation and adsorption. Such an explanation opens new directions for access to cryopreservation.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"56 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03364","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Supercooling allows for retarding water crystallization toward negative Celsius temperatures. Previous findings of CO2 molecules shifting into bicarbonate species upon freezing, the latter which naturally adsorb on hydrophobic interfaces, are put in perspective here to interpret earlier published data. Since it has been shown that ice nucleation is unlikely on negatively charged surfaces, I propose that bicarbonates adsorb on most solid particles present in water that act as nucleators, thus retarding freezing and enhancing supercooling. This hypothesis can now explain the deep supercooling observed for sealed and boiled water samples and oil-topped water samples, promoting both more bicarbonate generation and adsorption. Such an explanation opens new directions for access to cryopreservation.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.