Ternary Metal (W–Ni–Sr) Oxide@Polypyrrole Nanotubes: A New Frontier in the Electrochemical Detection of Promethazine Hydrochloride (PMHC)

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Shilpa Purushothama, Sirisha Subbareddy, Santhosh Arehalli Shivamurthy, Sandeep Shadakshari, Shruthi Chinnakurli Dwarakanath, Venkata Narayana Palakollu
{"title":"Ternary Metal (W–Ni–Sr) Oxide@Polypyrrole Nanotubes: A New Frontier in the Electrochemical Detection of Promethazine Hydrochloride (PMHC)","authors":"Shilpa Purushothama, Sirisha Subbareddy, Santhosh Arehalli Shivamurthy, Sandeep Shadakshari, Shruthi Chinnakurli Dwarakanath, Venkata Narayana Palakollu","doi":"10.1021/acs.langmuir.4c03820","DOIUrl":null,"url":null,"abstract":"Promethazine hydrochloride (PMHC) is a vital drug that is used as an anticholinergic, antipsychotic, antihistaminic, analgesic, sedative, and neuroleptic. However, the overdosage of PMHC also causes reproductive variations, cardiac changes, hypotension, and endocrinal variations. Hence, the detection of PMHC is crucial. Therefore, in this work an electrochemical method for the detection of PMHC is reported. The fabrication for the modified electrode is built with tungsten (W), nickel (N), and strontium (S) ternary oxide (tWNSO). To the best of our knowledge, this tWNSO ternary oxide preparation is reported for the first time in the literature. The prepared ternary oxide is deposited on the polypyrrole nanotubes, and this nanocomposite that is formed is confirmed by various physical characterizations like XRD, SEM, TEM, UV–vis spectroscopy, FTIR spectroscopy, and also DFT studies for PMHC. Thus, the nanocomposite obtained is used as a working electrode for the detection of PMHC. The fabricated tWNSO/PPyNTs/GCE has an effective surface area of 0.0436 cm<sup>2</sup>. Also, no fouling was observed. The limit of detection of the analyte PMHC is 3.66 nM, the limit of quantification is 11.10 nM, and the sensitivity of the fabricated electrode in identifying the analyte is found to be 20.10 μA μM<sup>–1</sup> cm<sup>–2</sup>. Thus, the modified working electrode effectively detects the analyte PMHC while demonstrating excellent stability and reproducibility.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"24 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03820","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Promethazine hydrochloride (PMHC) is a vital drug that is used as an anticholinergic, antipsychotic, antihistaminic, analgesic, sedative, and neuroleptic. However, the overdosage of PMHC also causes reproductive variations, cardiac changes, hypotension, and endocrinal variations. Hence, the detection of PMHC is crucial. Therefore, in this work an electrochemical method for the detection of PMHC is reported. The fabrication for the modified electrode is built with tungsten (W), nickel (N), and strontium (S) ternary oxide (tWNSO). To the best of our knowledge, this tWNSO ternary oxide preparation is reported for the first time in the literature. The prepared ternary oxide is deposited on the polypyrrole nanotubes, and this nanocomposite that is formed is confirmed by various physical characterizations like XRD, SEM, TEM, UV–vis spectroscopy, FTIR spectroscopy, and also DFT studies for PMHC. Thus, the nanocomposite obtained is used as a working electrode for the detection of PMHC. The fabricated tWNSO/PPyNTs/GCE has an effective surface area of 0.0436 cm2. Also, no fouling was observed. The limit of detection of the analyte PMHC is 3.66 nM, the limit of quantification is 11.10 nM, and the sensitivity of the fabricated electrode in identifying the analyte is found to be 20.10 μA μM–1 cm–2. Thus, the modified working electrode effectively detects the analyte PMHC while demonstrating excellent stability and reproducibility.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信