Large Language Modeling to Assist Natural Polyphenols as Green Precipitants for Recycling Spent Batteries

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Huijun Huang, Mei Chen, Yajing Zhang, Xiaoling Wang, Qiuping Xie, Yiran Pu, Yuanmeng He, Limin Zhu, Yunxiang He, Junling Guo
{"title":"Large Language Modeling to Assist Natural Polyphenols as Green Precipitants for Recycling Spent Batteries","authors":"Huijun Huang, Mei Chen, Yajing Zhang, Xiaoling Wang, Qiuping Xie, Yiran Pu, Yuanmeng He, Limin Zhu, Yunxiang He, Junling Guo","doi":"10.1021/acs.langmuir.4c04262","DOIUrl":null,"url":null,"abstract":"The growing demand for energy storage batteries, driven by the need to alleviate global warming and reduce fossil fuel dependency, has led to environmental concerns surrounding spent batteries. Efficient recycling of these batteries is essential to prevent pollution and recover valuable metal ions such as nickel (Ni<sup>2+</sup>), cobalt (Co<sup>2+</sup>), and manganese (Mn<sup>2+</sup>). Conventional hydrometallurgical methods for battery recycling, while effective, often involve harmful chemicals and processes. Natural polyphenols offer a greener alternative due to their ability to coordinate with metal ions. However, optimizing polyphenol selection for efficient recovery remains a labor-intensive challenge. This study presents a strategy combining natural polyphenols as green precipitants with the power of GPT-4, a large language model (LLM), to enhance the precipitation and recovery of metal ions from spent batteries. By leveraging the capabilities of GPT-4 in natural language processing, we enable a dynamic, iterative collaboration between human researchers and the LLM, optimizing polyphenol selection for different experimental conditions. The results show that tannic acid achieved precipitation rates of 94.8, 96.7, and 96.7% for Ni<sup>2+</sup>, Co<sup>2+</sup>, and Mn<sup>2+</sup>, respectively, outperforming conventional methods. The integration of GPT-4 enhances both the efficiency and accuracy of the process, ensuring environmental sustainability by minimizing secondary pollution and utilizing biodegradable materials. This innovative strategy demonstrates the potential of combining artificial intelligence-driven analysis with green chemistry to address battery recycling challenges, paving the way for more sustainable and efficient methods.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"67 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04262","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for energy storage batteries, driven by the need to alleviate global warming and reduce fossil fuel dependency, has led to environmental concerns surrounding spent batteries. Efficient recycling of these batteries is essential to prevent pollution and recover valuable metal ions such as nickel (Ni2+), cobalt (Co2+), and manganese (Mn2+). Conventional hydrometallurgical methods for battery recycling, while effective, often involve harmful chemicals and processes. Natural polyphenols offer a greener alternative due to their ability to coordinate with metal ions. However, optimizing polyphenol selection for efficient recovery remains a labor-intensive challenge. This study presents a strategy combining natural polyphenols as green precipitants with the power of GPT-4, a large language model (LLM), to enhance the precipitation and recovery of metal ions from spent batteries. By leveraging the capabilities of GPT-4 in natural language processing, we enable a dynamic, iterative collaboration between human researchers and the LLM, optimizing polyphenol selection for different experimental conditions. The results show that tannic acid achieved precipitation rates of 94.8, 96.7, and 96.7% for Ni2+, Co2+, and Mn2+, respectively, outperforming conventional methods. The integration of GPT-4 enhances both the efficiency and accuracy of the process, ensuring environmental sustainability by minimizing secondary pollution and utilizing biodegradable materials. This innovative strategy demonstrates the potential of combining artificial intelligence-driven analysis with green chemistry to address battery recycling challenges, paving the way for more sustainable and efficient methods.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信