Monford Paul Abishek N, Xun Wang, Heung Jin Jeon, Heon M. Lim
{"title":"Deciphering the Coupling State-Dependent Transcription Termination in the Escherichia coli Galactose Operon","authors":"Monford Paul Abishek N, Xun Wang, Heung Jin Jeon, Heon M. Lim","doi":"10.1111/mmi.15339","DOIUrl":null,"url":null,"abstract":"The distance between the ribosome and the RNA polymerase active centers, known as the mRNA loop length, is crucial for transcription-translation coupling. Despite the existence of multiple expressomes with varying mRNA loop lengths, their in vivo roles remain largely unexplored. This study examines the mechanisms governing transcription termination in the <i>Escherichia coli</i> galactose operon, revealing a crucial role in the transcription and translation coupling state. The operon utilizes both Rho-independent and Rho-dependent terminators. Our findings demonstrate that long-loop coupled transcription-translation complexes preferentially terminate at the upstream Rho-independent terminator, while short-loop complexes bypass it, terminating at the downstream Rho-dependent terminator. The efficiency of the Rho-independent terminator is enhanced by an extended U-track, suggesting a novel mechanism to overcome ribosome inhibition. These results uncover a new regulatory layer in transcription termination, challenging the traditional view of this process as random and highlighting a predetermined mechanism based on the coupling state. We propose that tandem terminators may function as regulatory checkpoints under fluctuating ribosome-RNAP coupling conditions, which can occur due to specific cellular states or factors affecting ribosome or RNAP binding efficiency. This suggests a previously overlooked mechanism that could refine transcription termination choices and expand our understanding of transcription regulation.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"6 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15339","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The distance between the ribosome and the RNA polymerase active centers, known as the mRNA loop length, is crucial for transcription-translation coupling. Despite the existence of multiple expressomes with varying mRNA loop lengths, their in vivo roles remain largely unexplored. This study examines the mechanisms governing transcription termination in the Escherichia coli galactose operon, revealing a crucial role in the transcription and translation coupling state. The operon utilizes both Rho-independent and Rho-dependent terminators. Our findings demonstrate that long-loop coupled transcription-translation complexes preferentially terminate at the upstream Rho-independent terminator, while short-loop complexes bypass it, terminating at the downstream Rho-dependent terminator. The efficiency of the Rho-independent terminator is enhanced by an extended U-track, suggesting a novel mechanism to overcome ribosome inhibition. These results uncover a new regulatory layer in transcription termination, challenging the traditional view of this process as random and highlighting a predetermined mechanism based on the coupling state. We propose that tandem terminators may function as regulatory checkpoints under fluctuating ribosome-RNAP coupling conditions, which can occur due to specific cellular states or factors affecting ribosome or RNAP binding efficiency. This suggests a previously overlooked mechanism that could refine transcription termination choices and expand our understanding of transcription regulation.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.