Ratiometric electrochemical sensor based on methylene blue-functionalized Ti3C2Tx MXene/Pt nanoparticle composites for reliable detection of carbendazim
{"title":"Ratiometric electrochemical sensor based on methylene blue-functionalized Ti3C2Tx MXene/Pt nanoparticle composites for reliable detection of carbendazim","authors":"Ying Wang, Xiaohong Liu, Hao Tan, Yiming Yang, Xi Wang, Chengxi Zhu","doi":"10.1016/j.jallcom.2025.178538","DOIUrl":null,"url":null,"abstract":"Rapid and reliable detection of pesticide residues is critical in public health, food safety and environmental control. Herein, a novel ratiometric electrochemical sensor based on methylene blue-functionalized Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/Pt nanoparticle composites (MXene@MB/PtNPs) was developed for reliable detection of carbendazim (CBZ). The MXene@MB/PtNPs composites were synthesized by a mild and simple room-temperature approach. Here, the decoration of Pt nanoparticles can enhance the conductivity and catalytic activity of the composites. The functional electroactive molecule methylene blue (MB) implanted in MXene could not only hinder the aggregation of MXene layers and promote the electron transfer activity of the materials, but also serve as an internal reference probe to form a ratiometric sensing strategy. The obtained MXene@MB/PtNPs composites showed a superior electrochemical catalytic performance toward CBZ. Based on the ratiometric signal of the response current to the reference current (I<sub>CBZ</sub>/I<sub>MB</sub>), the developed sensor possessed a wide linear range of 10<!-- --> <!-- -->ng<!-- --> <!-- -->mL<sup>-1</sup> to 30<!-- --> <!-- -->μg<!-- --> <!-- -->mL<sup>-1</sup> with a low LOD of 4.2<!-- --> <!-- -->ng<!-- --> <!-- -->mL<sup>-1</sup>. Compared with single-signal detection, the developed ratiometric electrochemical sensor could offer more accurate and reliable results, and exhibited favorable selectivity, reproducibility and long-term stability, and great application potential in pesticide residue detection in agricultural products.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"83 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.178538","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid and reliable detection of pesticide residues is critical in public health, food safety and environmental control. Herein, a novel ratiometric electrochemical sensor based on methylene blue-functionalized Ti3C2Tx MXene/Pt nanoparticle composites (MXene@MB/PtNPs) was developed for reliable detection of carbendazim (CBZ). The MXene@MB/PtNPs composites were synthesized by a mild and simple room-temperature approach. Here, the decoration of Pt nanoparticles can enhance the conductivity and catalytic activity of the composites. The functional electroactive molecule methylene blue (MB) implanted in MXene could not only hinder the aggregation of MXene layers and promote the electron transfer activity of the materials, but also serve as an internal reference probe to form a ratiometric sensing strategy. The obtained MXene@MB/PtNPs composites showed a superior electrochemical catalytic performance toward CBZ. Based on the ratiometric signal of the response current to the reference current (ICBZ/IMB), the developed sensor possessed a wide linear range of 10 ng mL-1 to 30 μg mL-1 with a low LOD of 4.2 ng mL-1. Compared with single-signal detection, the developed ratiometric electrochemical sensor could offer more accurate and reliable results, and exhibited favorable selectivity, reproducibility and long-term stability, and great application potential in pesticide residue detection in agricultural products.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.