Excitons in the fractional quantum Hall effect

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-01-08 DOI:10.1038/s41586-024-08274-3
Naiyuan J. Zhang, Ron Q. Nguyen, Navketan Batra, Xiaoxue Liu, Kenji Watanabe, Takashi Taniguchi, D. E. Feldman, J. I. A. Li
{"title":"Excitons in the fractional quantum Hall effect","authors":"Naiyuan J. Zhang, Ron Q. Nguyen, Navketan Batra, Xiaoxue Liu, Kenji Watanabe, Takashi Taniguchi, D. E. Feldman, J. I. A. Li","doi":"10.1038/s41586-024-08274-3","DOIUrl":null,"url":null,"abstract":"Excitons, Coulomb-driven bound states of electrons and holes, are typically composed of integer charges1,2. However, in bilayer systems influenced by charge fractionalization3,4, a more interesting form of interlayer exciton can emerge, in which pairing occurs between constituents that carry fractional charges. Despite numerous theoretical predictions for these fractional excitons5–16, their experimental observation has remained unexplored. Here we report transport signatures of excitonic pairing in fractional quantum Hall effect states. By probing the composition of these excitons and their impact on the underlying wavefunction, we discover two new types of quantum phases of matter. One of these can be viewed as the fractional counterpart of the exciton condensate at a total filling of 1, whereas the other involves a more unusual type of exciton that obeys non-bosonic quantum statistics, challenging the standard model of bosonic excitons. Excitonic pairing in fractional quantum Hall states shows two new quantum phases, including a fractional exciton condensate and an unusual type of exciton that obeys fermionic or anyonic quantum statistics.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"637 8045","pages":"327-332"},"PeriodicalIF":50.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08274-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Excitons, Coulomb-driven bound states of electrons and holes, are typically composed of integer charges1,2. However, in bilayer systems influenced by charge fractionalization3,4, a more interesting form of interlayer exciton can emerge, in which pairing occurs between constituents that carry fractional charges. Despite numerous theoretical predictions for these fractional excitons5–16, their experimental observation has remained unexplored. Here we report transport signatures of excitonic pairing in fractional quantum Hall effect states. By probing the composition of these excitons and their impact on the underlying wavefunction, we discover two new types of quantum phases of matter. One of these can be viewed as the fractional counterpart of the exciton condensate at a total filling of 1, whereas the other involves a more unusual type of exciton that obeys non-bosonic quantum statistics, challenging the standard model of bosonic excitons. Excitonic pairing in fractional quantum Hall states shows two new quantum phases, including a fractional exciton condensate and an unusual type of exciton that obeys fermionic or anyonic quantum statistics.

Abstract Image

Abstract Image

分数量子霍尔效应中的激子
激子,电子和空穴的库仑驱动束缚态,通常由整数电荷1,2组成。然而,在受电荷分数化影响的双层系统中,可以出现一种更有趣的层间激子形式,其中在携带分数电荷的组分之间发生配对。尽管对这些分数激子5,6,7,8,9,10,11,12,13,14,15,16有许多理论预测,但它们的实验观察仍然未被探索。本文报道了分数量子霍尔效应态中激子对的输运特征。通过探测这些激子的组成及其对潜在波函数的影响,我们发现了两种新的物质量子相。其中一个可以被看作是总填充为1的激子凝聚的分数对应物,而另一个则涉及一种更不寻常的激子类型,它遵循非玻色子量子统计,挑战玻色子激子的标准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信