Jinxi Xiang, Xiyue Wang, Xiaoming Zhang, Yinghua Xi, Feyisope Eweje, Yijiang Chen, Yuchen Li, Colin Bergstrom, Matthew Gopaulchan, Ted Kim, Kun-Hsing Yu, Sierra Willens, Francesca Maria Olguin, Jeffrey J. Nirschl, Joel Neal, Maximilian Diehn, Sen Yang, Ruijiang Li
{"title":"A vision–language foundation model for precision oncology","authors":"Jinxi Xiang, Xiyue Wang, Xiaoming Zhang, Yinghua Xi, Feyisope Eweje, Yijiang Chen, Yuchen Li, Colin Bergstrom, Matthew Gopaulchan, Ted Kim, Kun-Hsing Yu, Sierra Willens, Francesca Maria Olguin, Jeffrey J. Nirschl, Joel Neal, Maximilian Diehn, Sen Yang, Ruijiang Li","doi":"10.1038/s41586-024-08378-w","DOIUrl":null,"url":null,"abstract":"<p>Clinical decision-making is driven by multimodal data, including clinical notes and pathological characteristics. Artificial intelligence approaches that can effectively integrate multimodal data hold significant promise in advancing clinical care<sup>1,2</sup>. However, the scarcity of well-annotated multimodal datasets in clinical settings has hindered the development of useful models. In this study, we developed the Multimodal transformer with Unified maSKed modeling (MUSK), a vision–language foundation model designed to leverage large-scale, unlabelled, unpaired image and text data. MUSK was pretrained on 50 million pathology images from 11,577 patients and one billion pathology-related text tokens using unified masked modelling. It was further pretrained on one million pathology image–text pairs to efficiently align the vision and language features. With minimal or no further training, MUSK was tested in a wide range of applications and demonstrated superior performance across 23 patch-level and slide-level benchmarks, including image-to-text and text-to-image retrieval, visual question answering, image classification and molecular biomarker prediction. Furthermore, MUSK showed strong performance in outcome prediction, including melanoma relapse prediction, pan-cancer prognosis prediction and immunotherapy response prediction in lung and gastro-oesophageal cancers. MUSK effectively combined complementary information from pathology images and clinical reports and could potentially improve diagnosis and precision in cancer therapy.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"13 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08378-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical decision-making is driven by multimodal data, including clinical notes and pathological characteristics. Artificial intelligence approaches that can effectively integrate multimodal data hold significant promise in advancing clinical care1,2. However, the scarcity of well-annotated multimodal datasets in clinical settings has hindered the development of useful models. In this study, we developed the Multimodal transformer with Unified maSKed modeling (MUSK), a vision–language foundation model designed to leverage large-scale, unlabelled, unpaired image and text data. MUSK was pretrained on 50 million pathology images from 11,577 patients and one billion pathology-related text tokens using unified masked modelling. It was further pretrained on one million pathology image–text pairs to efficiently align the vision and language features. With minimal or no further training, MUSK was tested in a wide range of applications and demonstrated superior performance across 23 patch-level and slide-level benchmarks, including image-to-text and text-to-image retrieval, visual question answering, image classification and molecular biomarker prediction. Furthermore, MUSK showed strong performance in outcome prediction, including melanoma relapse prediction, pan-cancer prognosis prediction and immunotherapy response prediction in lung and gastro-oesophageal cancers. MUSK effectively combined complementary information from pathology images and clinical reports and could potentially improve diagnosis and precision in cancer therapy.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.