A Fabric‐Based Multimodal Flexible Tactile Sensor With Precise Sensing and Discrimination Capabilities for Pressure‐Proximity‐Magnetic Field Signals

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mengya Song, Qiongzhen Liu, Xiao Xu, Bo Wang, Ying Lu, Liyan Yang, Xue Liu, Yuedan Wang, Mufang Li, Dong Wang
{"title":"A Fabric‐Based Multimodal Flexible Tactile Sensor With Precise Sensing and Discrimination Capabilities for Pressure‐Proximity‐Magnetic Field Signals","authors":"Mengya Song, Qiongzhen Liu, Xiao Xu, Bo Wang, Ying Lu, Liyan Yang, Xue Liu, Yuedan Wang, Mufang Li, Dong Wang","doi":"10.1002/adfm.202420445","DOIUrl":null,"url":null,"abstract":"Currently, flexible tactile sensors integrating proximity‐pressure sensing encounter challenges in efficient multisignal acquisition, accurate recognition, cost control, and scalability. Herein, a fabric‐based multimodal flexible capacitive sensor (MFCS), combining an integrated fabric electrode design with a magnetic tilted micropillars (MTM) array microstructure, is developed. This innovative design significantly enhances the sensor's fringing effect, magnetic responsiveness, and dielectric layer's deformation ability, enabling precise perception of pressure, proximity, and magnetic field changes. The MFCS demonstrates high sensitivity and rapid response characteristics, achieving a sensitivity of 0.146 kPa⁻¹ under 0–2 kPa pressure with response/recovery times of ≈12/24 ms. Moreover, it detects hand proximity within a 20 cm range, with a sensitivity of −0.039 cm⁻¹ in the 0–2 cm range, and a magnetic field detection limit of 10 mT, showing a sensitivity of −1.72 T⁻¹ in the 60–230 mT range. The sensor operates effectively in both capacitance and resonant frequency modes, distinguishing different signals, thus offering new possibilities for smart wearable devices and interactive systems. Overall, the MFCS features multimodal sensing, a fully fabric structure, cost‐effectiveness, and ease of fabrication, making it promising for human–computer interaction, artificial intelligence, and health monitoring.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"83 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420445","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, flexible tactile sensors integrating proximity‐pressure sensing encounter challenges in efficient multisignal acquisition, accurate recognition, cost control, and scalability. Herein, a fabric‐based multimodal flexible capacitive sensor (MFCS), combining an integrated fabric electrode design with a magnetic tilted micropillars (MTM) array microstructure, is developed. This innovative design significantly enhances the sensor's fringing effect, magnetic responsiveness, and dielectric layer's deformation ability, enabling precise perception of pressure, proximity, and magnetic field changes. The MFCS demonstrates high sensitivity and rapid response characteristics, achieving a sensitivity of 0.146 kPa⁻¹ under 0–2 kPa pressure with response/recovery times of ≈12/24 ms. Moreover, it detects hand proximity within a 20 cm range, with a sensitivity of −0.039 cm⁻¹ in the 0–2 cm range, and a magnetic field detection limit of 10 mT, showing a sensitivity of −1.72 T⁻¹ in the 60–230 mT range. The sensor operates effectively in both capacitance and resonant frequency modes, distinguishing different signals, thus offering new possibilities for smart wearable devices and interactive systems. Overall, the MFCS features multimodal sensing, a fully fabric structure, cost‐effectiveness, and ease of fabrication, making it promising for human–computer interaction, artificial intelligence, and health monitoring.
一种基于织物的多模态柔性触觉传感器,具有对压力-接近-磁场信号的精确感知和识别能力
目前,集成近压传感的柔性触觉传感器在高效多信号采集、准确识别、成本控制和可扩展性等方面面临挑战。本文开发了一种基于织物的多模态柔性电容传感器(MFCS),将集成织物电极设计与磁倾斜微柱(MTM)阵列微观结构相结合。这种创新的设计显著提高了传感器的边缘效应、磁响应性和介电层的变形能力,能够精确感知压力、接近度和磁场变化。MFCS具有灵敏度高、反应速度快的特点,在0-2 kPa压力下的反应灵敏度为0.146 kPa⁻¹,反应/恢复时间为≈12/24 ms。此外,它在20厘米范围内检测手的距离,在0-2厘米范围内的灵敏度为- 0.039厘米⁻¹,在60-230厘米范围内的磁场检测极限为10 mT,灵敏度为- 1.72 T⁻¹。该传感器可在电容和谐振频率模式下有效工作,可区分不同的信号,从而为智能可穿戴设备和交互系统提供新的可能性。总体而言,MFCS具有多模态传感、完整的织物结构、成本效益和易于制造的特点,使其在人机交互、人工智能和健康监测方面具有前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信