Jionghuang He, Yingliang Zhao, Yong Tao, Peiliang Shen, Chi Sun Poon
{"title":"Insights into the synergistic action of initial hydration and subsequent carbonation of Portland cement","authors":"Jionghuang He, Yingliang Zhao, Yong Tao, Peiliang Shen, Chi Sun Poon","doi":"10.1016/j.cemconcomp.2025.105924","DOIUrl":null,"url":null,"abstract":"<div><div>Pretreatment-induced initial hydration would significantly influence subsequent carbonation. However, the evolution of microstructure and performance resulting from the synergistic action of hydration and carbonation remains systematically unexplored. This study investigates carbonation kinetics, microstructure and micro/macro mechanical properties of carbonated cement pastes (CCPs) under the synergistic action of initial hydration and subsequent carbonation, while elucidating the underlying mechanisms. The results revealed that unhydrated cement exhibited a peak carbonation rate of 0.65 W/g, increasing by approximately 83 % when the cement underwent an 8 h of initial curing, demonstrating the enhancement in the carbonation reactivity due to initial hydration. However, the carbonation efficiency of CCPs increased initially and then decreased as initial hydration extended. This trend emerged because initial hydration enhanced carbonation reactivity, whereas excessive hydration concurrently obstructed CO<sub>2</sub> transport. Furthermore, optimal initial hydration was essential for the synergistic interaction between hydration and carbonation, resulting in reduced porosity and a more homogeneous microstructure, as well as improved mechanical properties. These findings underscore the need to carefully consider the synergistic action of initial hydration and subsequent carbonation when designing pretreatment protocols.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"157 ","pages":"Article 105924"},"PeriodicalIF":10.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095894652500006X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pretreatment-induced initial hydration would significantly influence subsequent carbonation. However, the evolution of microstructure and performance resulting from the synergistic action of hydration and carbonation remains systematically unexplored. This study investigates carbonation kinetics, microstructure and micro/macro mechanical properties of carbonated cement pastes (CCPs) under the synergistic action of initial hydration and subsequent carbonation, while elucidating the underlying mechanisms. The results revealed that unhydrated cement exhibited a peak carbonation rate of 0.65 W/g, increasing by approximately 83 % when the cement underwent an 8 h of initial curing, demonstrating the enhancement in the carbonation reactivity due to initial hydration. However, the carbonation efficiency of CCPs increased initially and then decreased as initial hydration extended. This trend emerged because initial hydration enhanced carbonation reactivity, whereas excessive hydration concurrently obstructed CO2 transport. Furthermore, optimal initial hydration was essential for the synergistic interaction between hydration and carbonation, resulting in reduced porosity and a more homogeneous microstructure, as well as improved mechanical properties. These findings underscore the need to carefully consider the synergistic action of initial hydration and subsequent carbonation when designing pretreatment protocols.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.