Improving the Thermal Stability of Indium Oxide n-Type Field-Effect Transistors by Enhancing Crystallinity through Ultrahigh-Temperature Rapid Thermal Annealing

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ching-Shuan Huang, Che-Chi Shih, Wu-Wei Tsai, Wei-Yen Woon, Der-Hsien Lien, Chao-Hsin Chien
{"title":"Improving the Thermal Stability of Indium Oxide n-Type Field-Effect Transistors by Enhancing Crystallinity through Ultrahigh-Temperature Rapid Thermal Annealing","authors":"Ching-Shuan Huang, Che-Chi Shih, Wu-Wei Tsai, Wei-Yen Woon, Der-Hsien Lien, Chao-Hsin Chien","doi":"10.1021/acsami.4c18435","DOIUrl":null,"url":null,"abstract":"Ultrathin indium oxide films show great potential as channel materials of complementary metal oxide semiconductor back-end-of-line transistors due to their high carrier mobility, smooth surface, and low leakage current. However, it has severe thermal stability problems (unstable and negative threshold voltage shifts at high temperatures). In this paper, we clarified how the improved crystallinity of indium oxide by using ultrahigh-temperature rapid thermal O<sub>2</sub> annealing could reduce donor-like defects and suppress thermal-induced defects, drastically enhancing thermal stability. Not only does more crystalline indium oxide depict the high stability of threshold voltage in stringent high-temperature test environments and under positive bias, but it also shows much less degradation under forming gas annealing than as-deposited transistors. Furthermore, we also successfully solved the channel length-dependent threshold voltage problem, which is often observed in oxide transistors, by suppressing defects induced by the metal deposition process and metal doping.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"56 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18435","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrathin indium oxide films show great potential as channel materials of complementary metal oxide semiconductor back-end-of-line transistors due to their high carrier mobility, smooth surface, and low leakage current. However, it has severe thermal stability problems (unstable and negative threshold voltage shifts at high temperatures). In this paper, we clarified how the improved crystallinity of indium oxide by using ultrahigh-temperature rapid thermal O2 annealing could reduce donor-like defects and suppress thermal-induced defects, drastically enhancing thermal stability. Not only does more crystalline indium oxide depict the high stability of threshold voltage in stringent high-temperature test environments and under positive bias, but it also shows much less degradation under forming gas annealing than as-deposited transistors. Furthermore, we also successfully solved the channel length-dependent threshold voltage problem, which is often observed in oxide transistors, by suppressing defects induced by the metal deposition process and metal doping.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信