{"title":"Photocatalytic Reforming Raw Plastic in Seawater by Atomically‐Engineered GeS/ZnIn2S4","authors":"Amin Talebian‐Kiakalaieh, Haobo Li, Meijun Guo, Elhussein M. Hashem, Bingquan Xia, Jingrun Ran, Shi‐Zhang Qiao","doi":"10.1002/aenm.202404963","DOIUrl":null,"url":null,"abstract":"The escalating crisis of oceanic plastic pollution demands innovative and effective strategies for resolution. Photocatalysis offers a sustainable, green, and energy‐efficient approach for the upcycling of plastic waste into fuels and value‐added chemicals. In this study, an atomically engineered GeS NS/ZnIn₂S₄ photocatalyst is employed to directly transform raw polyethylene terephthalate (PET), a ubiquitous plastic, into a variety of organic chemicals (13 917 µmol g⁻¹) using Earth's most abundant resources: sunlight, seawater, and air. Advanced ex situ and in situ characterization analyses reveal that sulfur vacancies (Vs) and electrolyte‐assisted polarization effect of seawater play crucial roles in trapping photogenerated electrons and accelerating charge carrier separation, respectively. These effects significantly enhance photocatalytic plastic upcycling efficiency and improve oxidative organic reactions. This research introduces a methodology that accounts for real‐world conditions in photocatalytic plastic upcycling, utilizing abundant natural resources and paving the way for further exploration in this area.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"1 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404963","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating crisis of oceanic plastic pollution demands innovative and effective strategies for resolution. Photocatalysis offers a sustainable, green, and energy‐efficient approach for the upcycling of plastic waste into fuels and value‐added chemicals. In this study, an atomically engineered GeS NS/ZnIn₂S₄ photocatalyst is employed to directly transform raw polyethylene terephthalate (PET), a ubiquitous plastic, into a variety of organic chemicals (13 917 µmol g⁻¹) using Earth's most abundant resources: sunlight, seawater, and air. Advanced ex situ and in situ characterization analyses reveal that sulfur vacancies (Vs) and electrolyte‐assisted polarization effect of seawater play crucial roles in trapping photogenerated electrons and accelerating charge carrier separation, respectively. These effects significantly enhance photocatalytic plastic upcycling efficiency and improve oxidative organic reactions. This research introduces a methodology that accounts for real‐world conditions in photocatalytic plastic upcycling, utilizing abundant natural resources and paving the way for further exploration in this area.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.