Chang Liu, Tianyu Liang, Xin Sui, Lena Du, Quanlin Guo, Guodong Xue, Chen Huang, Yilong You, Guangjie Yao, Mengze Zhao, Jianbo Yin, Zhipei Sun, Hao Hong, Enge Wang, Kaihui Liu
{"title":"Anomalous photovoltaics in Janus MoSSe monolayers","authors":"Chang Liu, Tianyu Liang, Xin Sui, Lena Du, Quanlin Guo, Guodong Xue, Chen Huang, Yilong You, Guangjie Yao, Mengze Zhao, Jianbo Yin, Zhipei Sun, Hao Hong, Enge Wang, Kaihui Liu","doi":"10.1038/s41467-024-55623-x","DOIUrl":null,"url":null,"abstract":"<p>The anomalous photovoltaic effect (APE) in polar crystals is a promising avenue for overcoming the energy conversion efficiency limits of conventional photoelectric devices utilizing p-n junction architectures. To facilitate effective photocarrier separation and enhance the APE, polar materials need to be thinned down to maximize the depolarization field. Here, we demonstrate Janus MoSSe monolayers (~0.67 nm thick) with strong spontaneous photocurrent generation. A photoresponsivity up to 3 mA/W, with ~ 1% external quantum efficiency and ultrafast photoresponse (~50 ps) were observed in the MoSSe device. Moreover, unlike conventional 2D materials that require careful twist alignment, the photovoltage can be further scaled up by simply stacking the MoSSe layers without the need for specific control on interlayer twist angles. Our work paves the way for the development of high-performance, flexible, and compact photovoltaics and optoelectronics with atomically engineered Janus polar materials.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"24 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55623-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The anomalous photovoltaic effect (APE) in polar crystals is a promising avenue for overcoming the energy conversion efficiency limits of conventional photoelectric devices utilizing p-n junction architectures. To facilitate effective photocarrier separation and enhance the APE, polar materials need to be thinned down to maximize the depolarization field. Here, we demonstrate Janus MoSSe monolayers (~0.67 nm thick) with strong spontaneous photocurrent generation. A photoresponsivity up to 3 mA/W, with ~ 1% external quantum efficiency and ultrafast photoresponse (~50 ps) were observed in the MoSSe device. Moreover, unlike conventional 2D materials that require careful twist alignment, the photovoltage can be further scaled up by simply stacking the MoSSe layers without the need for specific control on interlayer twist angles. Our work paves the way for the development of high-performance, flexible, and compact photovoltaics and optoelectronics with atomically engineered Janus polar materials.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.