{"title":"MIL-53(FeNiCo) decorated BiVO4 photoanode for efficient photoelectrochemical water oxidation","authors":"Leiting Si, Jiawei Yang, Guang Liu","doi":"10.1039/d4dt03089c","DOIUrl":null,"url":null,"abstract":"BiVO4 is considered as one of the important candidate materials for photoelectrochemical water splitting technology. However, the low efficiency of charge separation and poor kinetics of water oxidation limit its performance in the PEC water splitting. In this work, BiVO4/MIL-53(FeNiCo) photoanode was constructed by a facile hydrothermal deposition method, exhibiting excellent water oxidation ability under AM 1.5 G light irradiation, and achieving a photocurrent density of 3.53 mA cm-2 at 1.23 VRHE, which is about 3.2 times that of pure BiVO4. The electrochemical test results demonstrate that the decoration of MIL-53(FeNiCo) could enhance the charge transfer and accelerate the kinetics of water oxidation reaction, thus leading to the excellent PEC water splitting performance. The PEC stability is also significantly improved, indicating that MIL-53(FeNiCo) allows BiVO4 to be used for water oxidation for stable PEC water oxidation.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"56 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt03089c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
BiVO4 is considered as one of the important candidate materials for photoelectrochemical water splitting technology. However, the low efficiency of charge separation and poor kinetics of water oxidation limit its performance in the PEC water splitting. In this work, BiVO4/MIL-53(FeNiCo) photoanode was constructed by a facile hydrothermal deposition method, exhibiting excellent water oxidation ability under AM 1.5 G light irradiation, and achieving a photocurrent density of 3.53 mA cm-2 at 1.23 VRHE, which is about 3.2 times that of pure BiVO4. The electrochemical test results demonstrate that the decoration of MIL-53(FeNiCo) could enhance the charge transfer and accelerate the kinetics of water oxidation reaction, thus leading to the excellent PEC water splitting performance. The PEC stability is also significantly improved, indicating that MIL-53(FeNiCo) allows BiVO4 to be used for water oxidation for stable PEC water oxidation.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.