Transcription factor networks in cellular quiescence

IF 17.3 1区 生物学 Q1 CELL BIOLOGY
Mithun Mitra, Sandra L. Batista, Hilary A. Coller
{"title":"Transcription factor networks in cellular quiescence","authors":"Mithun Mitra, Sandra L. Batista, Hilary A. Coller","doi":"10.1038/s41556-024-01582-w","DOIUrl":null,"url":null,"abstract":"Many of the cells in mammalian tissues are in a reversible quiescent state; they are not dividing, but retain the ability to proliferate in response to extracellular signals. Quiescence relies on the activities of transcription factors (TFs) that orchestrate the repression of genes that promote proliferation and establish a quiescence-specific gene expression program. Here we discuss how the coordinated activities of TFs in different quiescent stem cells and differentiated cells maintain reversible cell cycle arrest and establish cell-protective signalling pathways. We further cover the emerging mechanisms governing the dysregulation of quiescence TF networks with age. We explore how recent developments in single-cell technologies have enhanced our understanding of quiescence heterogeneity and gene regulatory networks. We further discuss how TFs and their activities are themselves regulated at the RNA, protein and chromatin levels. Finally, we summarize the challenges associated with defining TF networks in quiescent cells. Recent developments in single-cell technologies have increased our understanding of how the coordinated activities of transcription factors in different quiescent cells and differentiated cells maintain reversible cell cycle arrest.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 1","pages":"14-27"},"PeriodicalIF":17.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41556-024-01582-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many of the cells in mammalian tissues are in a reversible quiescent state; they are not dividing, but retain the ability to proliferate in response to extracellular signals. Quiescence relies on the activities of transcription factors (TFs) that orchestrate the repression of genes that promote proliferation and establish a quiescence-specific gene expression program. Here we discuss how the coordinated activities of TFs in different quiescent stem cells and differentiated cells maintain reversible cell cycle arrest and establish cell-protective signalling pathways. We further cover the emerging mechanisms governing the dysregulation of quiescence TF networks with age. We explore how recent developments in single-cell technologies have enhanced our understanding of quiescence heterogeneity and gene regulatory networks. We further discuss how TFs and their activities are themselves regulated at the RNA, protein and chromatin levels. Finally, we summarize the challenges associated with defining TF networks in quiescent cells. Recent developments in single-cell technologies have increased our understanding of how the coordinated activities of transcription factors in different quiescent cells and differentiated cells maintain reversible cell cycle arrest.

Abstract Image

Abstract Image

细胞静止中的转录因子网络
哺乳动物组织中的许多细胞处于可逆的静止状态;它们不分裂,但保留了响应细胞外信号增殖的能力。静止依赖于转录因子(tf)的活性,这些转录因子协调抑制促进增殖的基因,并建立静止特异性基因表达程序。在这里,我们讨论了tf在不同的静止干细胞和分化细胞中的协调活动如何维持可逆的细胞周期阻滞和建立细胞保护信号通路。我们进一步介绍了随着年龄增长控制静止TF网络失调的新机制。我们探讨了单细胞技术的最新发展如何增强了我们对静止异质性和基因调控网络的理解。我们进一步讨论了tf及其活性如何在RNA、蛋白质和染色质水平上受到调节。最后,我们总结了在静止细胞中定义TF网络所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Cell Biology
Nature Cell Biology 生物-细胞生物学
CiteScore
28.40
自引率
0.90%
发文量
219
审稿时长
3 months
期刊介绍: Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to: -Autophagy -Cancer biology -Cell adhesion and migration -Cell cycle and growth -Cell death -Chromatin and epigenetics -Cytoskeletal dynamics -Developmental biology -DNA replication and repair -Mechanisms of human disease -Mechanobiology -Membrane traffic and dynamics -Metabolism -Nuclear organization and dynamics -Organelle biology -Proteolysis and quality control -RNA biology -Signal transduction -Stem cell biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信