Gene regulation by convergent promoters

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY
Elina Wiechens, Flavia Vigliotti, Kanstantsin Siniuk, Robert Schwarz, Katjana Schwab, Konstantin Riege, Alena van Bömmel, Ivonne Görlich, Martin Bens, Arne Sahm, Marco Groth, Morgan A. Sammons, Alexander Loewer, Steve Hoffmann, Martin Fischer
{"title":"Gene regulation by convergent promoters","authors":"Elina Wiechens, Flavia Vigliotti, Kanstantsin Siniuk, Robert Schwarz, Katjana Schwab, Konstantin Riege, Alena van Bömmel, Ivonne Görlich, Martin Bens, Arne Sahm, Marco Groth, Morgan A. Sammons, Alexander Loewer, Steve Hoffmann, Martin Fischer","doi":"10.1038/s41588-024-02025-w","DOIUrl":null,"url":null,"abstract":"Convergent transcription, that is, the collision of sense and antisense transcription, is ubiquitous in mammalian genomes and believed to diminish RNA expression. Recently, antisense transcription downstream of promoters was found to be surprisingly prevalent. However, functional characteristics of affected promoters are poorly investigated. Here we show that convergent transcription marks an unexpected positively co-regulated promoter constellation. By assessing transcriptional dynamic systems, we identified co-regulated constituent promoters connected through a distinct chromatin structure. Within these cis-regulatory domains, transcription factors can regulate both constituting promoters by binding to only one of them. Convergent promoters comprise about a quarter of all active transcript start sites and initiate 5′-overlapping antisense RNAs—an RNA class believed previously to be rare. Visualization of nascent RNA molecules reveals convergent cotranscription at these loci. Together, our results demonstrate that co-regulated convergent promoters substantially expand the cis-regulatory repertoire, reveal limitations of the transcription interference model and call for adjusting the promoter concept. Genome-wide analysis and genetic manipulation at loci regulated by p53, E2F4 and RFX7 show that convergent promoters with similar epigenetic features can be co-regulated and simultaneously expressed in the same direction.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 1","pages":"206-217"},"PeriodicalIF":31.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-024-02025-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-02025-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Convergent transcription, that is, the collision of sense and antisense transcription, is ubiquitous in mammalian genomes and believed to diminish RNA expression. Recently, antisense transcription downstream of promoters was found to be surprisingly prevalent. However, functional characteristics of affected promoters are poorly investigated. Here we show that convergent transcription marks an unexpected positively co-regulated promoter constellation. By assessing transcriptional dynamic systems, we identified co-regulated constituent promoters connected through a distinct chromatin structure. Within these cis-regulatory domains, transcription factors can regulate both constituting promoters by binding to only one of them. Convergent promoters comprise about a quarter of all active transcript start sites and initiate 5′-overlapping antisense RNAs—an RNA class believed previously to be rare. Visualization of nascent RNA molecules reveals convergent cotranscription at these loci. Together, our results demonstrate that co-regulated convergent promoters substantially expand the cis-regulatory repertoire, reveal limitations of the transcription interference model and call for adjusting the promoter concept. Genome-wide analysis and genetic manipulation at loci regulated by p53, E2F4 and RFX7 show that convergent promoters with similar epigenetic features can be co-regulated and simultaneously expressed in the same direction.

Abstract Image

Abstract Image

聚合启动子的基因调控
聚合转录,即正义转录和反义转录的碰撞,在哺乳动物基因组中普遍存在,并被认为会减少RNA的表达。近年来,人们发现启动子下游的反义转录异常普遍。然而,受影响的启动子的功能特征研究很少。在这里,我们展示了聚合转录标志着一个意想不到的正共调控启动子群。通过评估转录动态系统,我们确定了通过不同染色质结构连接的共调节成分启动子。在这些顺式调控区域内,转录因子可以通过仅结合其中一个来调节两个启动子。聚合启动子约占所有活性转录起始位点的四分之一,并启动5 '重叠的反义RNA,这是一种以前认为很罕见的RNA类别。新生RNA分子的可视化显示了这些位点的趋同共转录。总之,我们的研究结果表明,共调控的收敛启动子大大扩展了顺式调控曲目,揭示了转录干扰模型的局限性,并呼吁调整启动子概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信