Enhancing CO oxidation performance by controlling the interconnected pore structure in porous three-way catalyst particles

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-01-08 DOI:10.1039/d4nr03770g
Duhaul Biqal Kautsar, Phong Hoai Le, Ai Ando, Eishi Tanabe, Kiet Le Anh Cao, Eka Lutfi Septiani, Tomoyuki Hirano, Takashi Ogi
{"title":"Enhancing CO oxidation performance by controlling the interconnected pore structure in porous three-way catalyst particles","authors":"Duhaul Biqal Kautsar, Phong Hoai Le, Ai Ando, Eishi Tanabe, Kiet Le Anh Cao, Eka Lutfi Septiani, Tomoyuki Hirano, Takashi Ogi","doi":"10.1039/d4nr03770g","DOIUrl":null,"url":null,"abstract":"Highly ordered porous structured particles comprising three-way catalyst (TWC) nanoparticles have attracted attention because of their remarkable catalytic performance. However, the conditions for controlling their pore arrangement to form interconnected pore structures remain unclear. In particular, the correlation between framework thickness (distance between pores) or macroporosity and the diffusion of gaseous reactants to achieve a high catalytic performance has not been extensively discussed. Here, the interconnected pore structure was successfully controlled by adjusting the precursor components (i.e., template particle concentration) via a template-assisted spray process. A cross-sectional image analysis was conducted to comprehensively examine the internal structure and porous properties (framework thickness and macroporosity) of the porous TWC particles. In addition, we propose mathematical equations to predict the framework thickness and macroporosity, as well as determine the critical conditions that caused the formation of interconnected pores and broken structures in the porous TWC particles. The evaluation of CO oxidation performance revealed that porous TWC particles with an interconnected pore structure, thin framework, and high macroporosity exhibited a high catalytic performance owing to the effective diffusion and utilization of their internal parts. The study findings provide valuable insights into the design of porous TWC particles with interconnected pore structures to enhance exhaust gas emission control in real-world applications.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"20 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03770g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Highly ordered porous structured particles comprising three-way catalyst (TWC) nanoparticles have attracted attention because of their remarkable catalytic performance. However, the conditions for controlling their pore arrangement to form interconnected pore structures remain unclear. In particular, the correlation between framework thickness (distance between pores) or macroporosity and the diffusion of gaseous reactants to achieve a high catalytic performance has not been extensively discussed. Here, the interconnected pore structure was successfully controlled by adjusting the precursor components (i.e., template particle concentration) via a template-assisted spray process. A cross-sectional image analysis was conducted to comprehensively examine the internal structure and porous properties (framework thickness and macroporosity) of the porous TWC particles. In addition, we propose mathematical equations to predict the framework thickness and macroporosity, as well as determine the critical conditions that caused the formation of interconnected pores and broken structures in the porous TWC particles. The evaluation of CO oxidation performance revealed that porous TWC particles with an interconnected pore structure, thin framework, and high macroporosity exhibited a high catalytic performance owing to the effective diffusion and utilization of their internal parts. The study findings provide valuable insights into the design of porous TWC particles with interconnected pore structures to enhance exhaust gas emission control in real-world applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信