Xiaorui Su, Pengwei Hu, Dongxu Li, Bowei Zhao, Zhaomeng Niu, Thomas Herget, Philip S. Yu, Lun Hu
{"title":"Interpretable identification of cancer genes across biological networks via transformer-powered graph representation learning","authors":"Xiaorui Su, Pengwei Hu, Dongxu Li, Bowei Zhao, Zhaomeng Niu, Thomas Herget, Philip S. Yu, Lun Hu","doi":"10.1038/s41551-024-01312-5","DOIUrl":null,"url":null,"abstract":"<p>Graph representation learning has been leveraged to identify cancer genes from biological networks. However, its applicability is limited by insufficient interpretability and generalizability under integrative network analysis. Here we report the development of an interpretable and generalizable transformer-based model that accurately predicts cancer genes by leveraging graph representation learning and the integration of multi-omics data with the topologies of homogeneous and heterogeneous networks of biological interactions. The model allows for the interpretation of the respective importance of multi-omic and higher-order structural features, achieved state-of-the-art performance in the prediction of cancer genes across biological networks (including networks of interactions between miRNA and proteins, transcription factors and proteins, and transcription factors and miRNA) in pan-cancer and cancer-specific scenarios, and predicted 57 cancer-gene candidates (including three genes that had not been identified by other models) among 4,729 unlabelled genes across 8 pan-cancer datasets. The model’s interpretability and generalization may facilitate the understanding of gene-related regulatory mechanisms and the discovery of new cancer genes.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"42 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01312-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Graph representation learning has been leveraged to identify cancer genes from biological networks. However, its applicability is limited by insufficient interpretability and generalizability under integrative network analysis. Here we report the development of an interpretable and generalizable transformer-based model that accurately predicts cancer genes by leveraging graph representation learning and the integration of multi-omics data with the topologies of homogeneous and heterogeneous networks of biological interactions. The model allows for the interpretation of the respective importance of multi-omic and higher-order structural features, achieved state-of-the-art performance in the prediction of cancer genes across biological networks (including networks of interactions between miRNA and proteins, transcription factors and proteins, and transcription factors and miRNA) in pan-cancer and cancer-specific scenarios, and predicted 57 cancer-gene candidates (including three genes that had not been identified by other models) among 4,729 unlabelled genes across 8 pan-cancer datasets. The model’s interpretability and generalization may facilitate the understanding of gene-related regulatory mechanisms and the discovery of new cancer genes.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.