Amorphous/crystalline NiZr heterojunction nanorods for alkaline hydrogen evolution reaction prepared by magnetron sputtering

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jinsen Tian, Junhao Qin, Hao Zhang, Mingwei Tang, Jing Wu, Jiahua Zhu, Jun Shen
{"title":"Amorphous/crystalline NiZr heterojunction nanorods for alkaline hydrogen evolution reaction prepared by magnetron sputtering","authors":"Jinsen Tian, Junhao Qin, Hao Zhang, Mingwei Tang, Jing Wu, Jiahua Zhu, Jun Shen","doi":"10.1016/j.jallcom.2025.178575","DOIUrl":null,"url":null,"abstract":"Design of low-cost hydrogen evolution reaction (HER) electrocatalysts with high efficiency is important for the application of hydrogen. In this work, magnetron sputtering was utilized to prepare amorphous, crystalline and amorphous/crystalline (a/c) NiZr heterostructure nanorods catalysts. With increasing sputtering power of Zr, the deposited films transformed from crystalline to a/c heterojunction and amorphous structure. Compared with its amorphous and crystalline counterparts, the a/c heterojunction presented superior performance and stability in alkaline solution. The overpotential to reach 10<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup>-2</sup> and Tafel slope is low as 92<!-- --> <!-- -->mV and 66<!-- --> <!-- -->mV dec<sup>-1</sup>, respectively. This is mainly due to the high intrinsic activity and electron transfer rate caused by the nanorods and a/c heterojunction structure. Density functional theory (DFT) calculations confirmed that compared with crystalline, both the water dissociation energy and hydrogen absorption energy can be lowered by forming a/c heterostructure. This work presents a method to prepare an efficient a/c heterojunction electrocatalyst via modulating magnetron sputtering conditions.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"48 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.178575","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Design of low-cost hydrogen evolution reaction (HER) electrocatalysts with high efficiency is important for the application of hydrogen. In this work, magnetron sputtering was utilized to prepare amorphous, crystalline and amorphous/crystalline (a/c) NiZr heterostructure nanorods catalysts. With increasing sputtering power of Zr, the deposited films transformed from crystalline to a/c heterojunction and amorphous structure. Compared with its amorphous and crystalline counterparts, the a/c heterojunction presented superior performance and stability in alkaline solution. The overpotential to reach 10 mA cm-2 and Tafel slope is low as 92 mV and 66 mV dec-1, respectively. This is mainly due to the high intrinsic activity and electron transfer rate caused by the nanorods and a/c heterojunction structure. Density functional theory (DFT) calculations confirmed that compared with crystalline, both the water dissociation energy and hydrogen absorption energy can be lowered by forming a/c heterostructure. This work presents a method to prepare an efficient a/c heterojunction electrocatalyst via modulating magnetron sputtering conditions.

Abstract Image

磁控溅射法制备非晶/晶NiZr异质结碱性析氢纳米棒
设计低成本、高效的析氢反应电催化剂对氢的应用具有重要意义。本文采用磁控溅射法制备了非晶、晶和非晶/晶(a/c) NiZr异质结构纳米棒催化剂。随着Zr溅射功率的增大,沉积膜由结晶结构转变为a/c异质结和非晶结构。与非晶和晶体异质结相比,a/c异质结在碱性溶液中表现出优异的性能和稳定性。达到10 mA cm-2的过电位和Tafel斜率分别低至92 mV和66 mV 12 -1。这主要是由于纳米棒和a/c异质结结构引起的高本征活性和电子转移率。密度泛函理论(DFT)计算证实,与晶体相比,形成a/c异质结构可以降低水解离能和氢吸收能。本文提出了一种通过调制磁控溅射条件制备高效a/c异质结电催化剂的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信