Organocatalytic enantioselective synthesis of double S-shaped quadruple helicene-like molecules

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shengli Huang, Haojun Wen, Yige Li, Wenling Qin, Pengfei Wang, Yu Lan, Shiqi Jia, Hailong Yan
{"title":"Organocatalytic enantioselective synthesis of double S-shaped quadruple helicene-like molecules","authors":"Shengli Huang, Haojun Wen, Yige Li, Wenling Qin, Pengfei Wang, Yu Lan, Shiqi Jia, Hailong Yan","doi":"10.1038/s41467-024-55590-3","DOIUrl":null,"url":null,"abstract":"<p>Helicene-shaped molecules are compelling chemical structures with unique twisted helical chirality and remarkable properties. Although progress occurs in the catalytic asymmetric synthesis of helicene (-like) molecules, the enantioselective synthesis of multiple helicenes, especially four or higher helicity, is still challenging and has yet to be achieved. Herein, we report an organocatalytic [4 + 2] cycloadditions to achieve double S-shaped quadruple helicene-like molecules with high enantioselectivity (up to 96% e.e.). The enantioselective synthesis of (<i>P,P,P,P</i>) and (<i>M,M,M,M</i>) configurational quadruple helical molecules can be achieved by modulating the structure of the catalyst. Density functional theory (DFT) calculations show that the reaction involves the formation of a duplex vinylidene <i>ortho</i>-quinone methide (VQM) intermediate and two successive cycloaddition reactions. Configurational stability studies elucidate the isomerization process between the isomers. In addition, the structural features and optical properties of the quadruple helicene-like molecules were investigated to explore their potential applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55590-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Helicene-shaped molecules are compelling chemical structures with unique twisted helical chirality and remarkable properties. Although progress occurs in the catalytic asymmetric synthesis of helicene (-like) molecules, the enantioselective synthesis of multiple helicenes, especially four or higher helicity, is still challenging and has yet to be achieved. Herein, we report an organocatalytic [4 + 2] cycloadditions to achieve double S-shaped quadruple helicene-like molecules with high enantioselectivity (up to 96% e.e.). The enantioselective synthesis of (P,P,P,P) and (M,M,M,M) configurational quadruple helical molecules can be achieved by modulating the structure of the catalyst. Density functional theory (DFT) calculations show that the reaction involves the formation of a duplex vinylidene ortho-quinone methide (VQM) intermediate and two successive cycloaddition reactions. Configurational stability studies elucidate the isomerization process between the isomers. In addition, the structural features and optical properties of the quadruple helicene-like molecules were investigated to explore their potential applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信