{"title":"Tunable N-doped Carbon Dots/SnO2 Interface as a Stable Artificial Solid Electrolyte Interphase for High-Performance Aqueous Zinc-Ion Batteries","authors":"Mohan Gopalakrishnan, Myo Thandar Hlaing, Thirumoorthy Kulandaivel, Wathanyu Kao-ian, Mohammad Etesami, Wei-Ren Liu, Mai Thanh Nguyen, Tetsu Yonezawa, Wanwisa Limphirat, Soorathep Kheawhom","doi":"10.1016/j.jallcom.2025.178521","DOIUrl":null,"url":null,"abstract":"Poor stability of zinc (Zn) anode hinders the use of aqueous zinc-ion batteries (AZIBs) for large-scale energy storage. Here, we report an effective artificial solid electrolyte interphase (ASEI) using N-doped carbon dots (CDs) and SnO<sub>2</sub> to stabilize Zn anodes. By optimizing the CDs/SnO<sub>2</sub> ratio, we can synthesize porous composites to construct \"bayberry\" and flower-like morphologies. The N-doped CDs/SnO<sub>2</sub> anode creates surface dipoles and changes in charge distribution, allowing Zn ions to move to nitrogen functionalized sites with reduced adsorption barriers. Furthermore, hydroxyl oxygen boosts the surface's hydrophilicity, resulting in stronger adhesion to the Zn anode and better ion accessibility. This generates dense nucleation sites for uniform Zn deposition. The CDs/SnO<sub>2</sub>@Zn electrode achieves a low nucleation potential of 47<!-- --> <!-- -->mV and maintains 99.6% coulombic efficiency (CE) over 1000 cycles at 2<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup>-2</sup>. In the symmetrical cells, the modified Zn anode exhibits stable cycling for 1,200<!-- --> <!-- -->h at 1 mAh cm<sup>-2</sup>. A full cell with CDs/SnO<sub>2</sub>@Zn anode and MnO<sub>2</sub> cathode retains 96.6% capacity after 800<!-- --> <!-- -->h. This study introduces a promising strategy for stabilizing Zn anodes and offers valuable insights for designing dendrite-free electrodes in next-generation AZIBs.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"22 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.178521","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Poor stability of zinc (Zn) anode hinders the use of aqueous zinc-ion batteries (AZIBs) for large-scale energy storage. Here, we report an effective artificial solid electrolyte interphase (ASEI) using N-doped carbon dots (CDs) and SnO2 to stabilize Zn anodes. By optimizing the CDs/SnO2 ratio, we can synthesize porous composites to construct "bayberry" and flower-like morphologies. The N-doped CDs/SnO2 anode creates surface dipoles and changes in charge distribution, allowing Zn ions to move to nitrogen functionalized sites with reduced adsorption barriers. Furthermore, hydroxyl oxygen boosts the surface's hydrophilicity, resulting in stronger adhesion to the Zn anode and better ion accessibility. This generates dense nucleation sites for uniform Zn deposition. The CDs/SnO2@Zn electrode achieves a low nucleation potential of 47 mV and maintains 99.6% coulombic efficiency (CE) over 1000 cycles at 2 mA cm-2. In the symmetrical cells, the modified Zn anode exhibits stable cycling for 1,200 h at 1 mAh cm-2. A full cell with CDs/SnO2@Zn anode and MnO2 cathode retains 96.6% capacity after 800 h. This study introduces a promising strategy for stabilizing Zn anodes and offers valuable insights for designing dendrite-free electrodes in next-generation AZIBs.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.