Hydrogen-mediated control of magnetic anisotropy and magnetic domain structure in Co/Pd multilayer

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Yan-Ru Chu, Xi-Wei Lu, Chun-Tse Hsieh, Chun-Yen Huang, Po-Hsiang Hsu, Li-Jie Liaw, Chak-Ming Liu, Wen-Chin Lin
{"title":"Hydrogen-mediated control of magnetic anisotropy and magnetic domain structure in Co/Pd multilayer","authors":"Yan-Ru Chu, Xi-Wei Lu, Chun-Tse Hsieh, Chun-Yen Huang, Po-Hsiang Hsu, Li-Jie Liaw, Chak-Ming Liu, Wen-Chin Lin","doi":"10.1063/5.0242410","DOIUrl":null,"url":null,"abstract":"This study demonstrates the reversible transition from perpendicular to in-plane magnetic anisotropy in Co/Pd multilayers induced by hydrogenation, using a magneto-optic Kerr microscope. By controlling hydrogen pressure and exposure time, the transition is separated into coercivity and squareness ratio changes, reflecting reduced perpendicular anisotropy and spin reorientation. The Dzyaloshinskii–Moriya interaction is observed through asymmetric magnetic domain expansion, with hydrogenation causing domains to fragment. These results suggest hydrogenation as a method for precise control of magnetic anisotropy and domain structures.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"132 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0242410","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates the reversible transition from perpendicular to in-plane magnetic anisotropy in Co/Pd multilayers induced by hydrogenation, using a magneto-optic Kerr microscope. By controlling hydrogen pressure and exposure time, the transition is separated into coercivity and squareness ratio changes, reflecting reduced perpendicular anisotropy and spin reorientation. The Dzyaloshinskii–Moriya interaction is observed through asymmetric magnetic domain expansion, with hydrogenation causing domains to fragment. These results suggest hydrogenation as a method for precise control of magnetic anisotropy and domain structures.
Co/Pd多层膜磁各向异性和磁畴结构的氢调控
本研究利用磁光Kerr显微镜研究了Co/Pd多层膜由氢化诱导的垂直向平面内磁各向异性的可逆转变。通过控制氢气压力和曝光时间,将相变分解为矫顽力和方位比的变化,反映了垂直各向异性的降低和自旋取向的改变。Dzyaloshinskii-Moriya相互作用是通过不对称磁畴扩展观察到的,氢化导致磁畴破碎。这些结果表明氢化是一种精确控制磁各向异性和磁畴结构的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信