Machine Learning-Assisted High-Donor-Number Electrolyte Additive Screening toward Construction of Dendrite-Free Aqueous Zinc-Ion Batteries

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-01-07 DOI:10.1021/acsnano.4c13312
Haoran Luo, Qianzhi Gou, Yujie Zheng, Kaixin Wang, Ruduan Yuan, Sida Zhang, Wei Fang, Ziga Luogu, Yuzhi Hu, Huaping Mei, Bingye Song, Kuan Sun, John Wang, Meng Li
{"title":"Machine Learning-Assisted High-Donor-Number Electrolyte Additive Screening toward Construction of Dendrite-Free Aqueous Zinc-Ion Batteries","authors":"Haoran Luo, Qianzhi Gou, Yujie Zheng, Kaixin Wang, Ruduan Yuan, Sida Zhang, Wei Fang, Ziga Luogu, Yuzhi Hu, Huaping Mei, Bingye Song, Kuan Sun, John Wang, Meng Li","doi":"10.1021/acsnano.4c13312","DOIUrl":null,"url":null,"abstract":"The utilization of electrolyte additives has been regarded as an efficient strategy to construct dendrite-free aqueous zinc-ion batteries (AZIBs). However, the blurry screening criteria and time-consuming experimental tests inevitably restrict the application prospect of the electrolyte additive strategy. With the rise of artificial intelligence technology, machine learning (ML) provides an avenue to promote upgrading of energy storage devices. Herein, we proposed an intriguing ML-assisted method to accelerate the development efficiency of electrolyte additives on dendrite-free AZIBs. Concretely, we selected the Gutmann donor number (DN value) as a screen parameter, which can reflect the interaction between solvent molecules and ions, and proposed an integrated ML model that can predict the DN values of organic molecules via molecular fingerprints, thereby achieving the screening of electrolyte additives. Then, combined with experimental tests and theoretical calculations, the influence law of three additive molecules with different DN values on the thermodynamic stability of the Zn anode and its corresponding optimization mechanisms were revealed; the DN values of the additives are in positive correlation with the electrochemical performance of the Zn anode. Especially, an isopropyl alcohol (IPA) additive with a high DN value (36) integrated with various Zn-based cells presented a superior electrochemical performance, including a high calendar life (1500 h), a stable Coulombic efficiency (99% within 450 cycles), and a favorable cycling retention. This work pioneers ML techniques for predicting DN values for electrolyte additives, offering a compelling investigation method for the investigation of AZIBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"48 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13312","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of electrolyte additives has been regarded as an efficient strategy to construct dendrite-free aqueous zinc-ion batteries (AZIBs). However, the blurry screening criteria and time-consuming experimental tests inevitably restrict the application prospect of the electrolyte additive strategy. With the rise of artificial intelligence technology, machine learning (ML) provides an avenue to promote upgrading of energy storage devices. Herein, we proposed an intriguing ML-assisted method to accelerate the development efficiency of electrolyte additives on dendrite-free AZIBs. Concretely, we selected the Gutmann donor number (DN value) as a screen parameter, which can reflect the interaction between solvent molecules and ions, and proposed an integrated ML model that can predict the DN values of organic molecules via molecular fingerprints, thereby achieving the screening of electrolyte additives. Then, combined with experimental tests and theoretical calculations, the influence law of three additive molecules with different DN values on the thermodynamic stability of the Zn anode and its corresponding optimization mechanisms were revealed; the DN values of the additives are in positive correlation with the electrochemical performance of the Zn anode. Especially, an isopropyl alcohol (IPA) additive with a high DN value (36) integrated with various Zn-based cells presented a superior electrochemical performance, including a high calendar life (1500 h), a stable Coulombic efficiency (99% within 450 cycles), and a favorable cycling retention. This work pioneers ML techniques for predicting DN values for electrolyte additives, offering a compelling investigation method for the investigation of AZIBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信