Thin-Film Lead Zirconate Titanate Nanobeam Electro-Optic Modulator

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hongyan Yu, Yujun Xie, Chenlei Li, Jungan Wang, Chen Yang, Lei Wang, Ke Li, Daoxin Dai, Ming Li, Feng Qiu
{"title":"Thin-Film Lead Zirconate Titanate Nanobeam Electro-Optic Modulator","authors":"Hongyan Yu, Yujun Xie, Chenlei Li, Jungan Wang, Chen Yang, Lei Wang, Ke Li, Daoxin Dai, Ming Li, Feng Qiu","doi":"10.1021/acsphotonics.4c02113","DOIUrl":null,"url":null,"abstract":"The integration of electro-optic (EO) films on an insulator/silicon (Si) substrate presents opportunities to enhance the performance of devices with novel electronic and photonic properties. Among these EO films, lead zirconate titanate (PZT) exhibits attractive optical properties and a particularly strong Pockels effect. Here, we demonstrate ultracompact EO modulators incorporating PZT thin films on the ubiquitous SiO<sub>2</sub>/Si substrate based on the photonic crystal nanobeam resonator. With a moderate <i>Q</i>-factor in the designed distributed feedback resonator, the modulator exhibits a notable tuning efficiency of 21.2 pm under an applying voltage of 1 V and a broad modulation bandwidth of 37 GHz while maintaining a device length of only 50 μm. The device can support an ultrafast modulation of up to 80 Gbit/s and meanwhile features excellent reliability with a negligible power shift at a bias of 3 V even after 60 min. The ultracompact and high-speed PZT modulators could pave the way toward realizing dense photonic integrated circuits for broad applications in data communication, microwave photonics, and quantum photonics.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"42 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02113","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of electro-optic (EO) films on an insulator/silicon (Si) substrate presents opportunities to enhance the performance of devices with novel electronic and photonic properties. Among these EO films, lead zirconate titanate (PZT) exhibits attractive optical properties and a particularly strong Pockels effect. Here, we demonstrate ultracompact EO modulators incorporating PZT thin films on the ubiquitous SiO2/Si substrate based on the photonic crystal nanobeam resonator. With a moderate Q-factor in the designed distributed feedback resonator, the modulator exhibits a notable tuning efficiency of 21.2 pm under an applying voltage of 1 V and a broad modulation bandwidth of 37 GHz while maintaining a device length of only 50 μm. The device can support an ultrafast modulation of up to 80 Gbit/s and meanwhile features excellent reliability with a negligible power shift at a bias of 3 V even after 60 min. The ultracompact and high-speed PZT modulators could pave the way toward realizing dense photonic integrated circuits for broad applications in data communication, microwave photonics, and quantum photonics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信