Hakcheon Jeong, Seungjae Han, See-On Park, Tae Ryong Kim, Jongmin Bae, Taehwan Jang, Yoonho Cho, Seokho Seo, Hyun-Jun Jeong, Seungwoo Park, Taehoon Park, Juyoung Oh, Jeongwoo Park, Kwangwon Koh, Kang-Ho Kim, Dongsuk Jeon, Inyong Kwon, Young-Gyu Yoon, Shinhyun Choi
{"title":"Self-supervised video processing with self-calibration on an analogue computing platform based on a selector-less memristor array","authors":"Hakcheon Jeong, Seungjae Han, See-On Park, Tae Ryong Kim, Jongmin Bae, Taehwan Jang, Yoonho Cho, Seokho Seo, Hyun-Jun Jeong, Seungwoo Park, Taehoon Park, Juyoung Oh, Jeongwoo Park, Kwangwon Koh, Kang-Ho Kim, Dongsuk Jeon, Inyong Kwon, Young-Gyu Yoon, Shinhyun Choi","doi":"10.1038/s41928-024-01318-6","DOIUrl":null,"url":null,"abstract":"<p>Memristor-based platforms could be used to create compact and energy-efficient artificial intelligence (AI) edge-computing systems due to their parallel computation ability in the analogue domain. However, systems based on memristor arrays face challenges implementing real-time AI algorithms with fully on-device learning due to reliability issues, such as low yield, poor uniformity and endurance problems. Here we report an analogue computing platform based on a selector-less analogue memristor array. We use interfacial-type titanium oxide memristors with a gradual oxygen distribution that exhibit high reliability, high linearity, forming-free attribute and self-rectification. Our platform—which consists of a selector-less (one-memristor) 1 K (32 × 32) crossbar array, peripheral circuitry and digital controller—can run AI algorithms in the analogue domain by self-calibration without compensation operations or pretraining. We illustrate the capabilities of the system with real-time video foreground and background separation, achieving an average peak signal-to-noise ratio of 30.49 dB and a structural similarity index measure of 0.81; these values are similar to those of simulations for the ideal case.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01318-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Memristor-based platforms could be used to create compact and energy-efficient artificial intelligence (AI) edge-computing systems due to their parallel computation ability in the analogue domain. However, systems based on memristor arrays face challenges implementing real-time AI algorithms with fully on-device learning due to reliability issues, such as low yield, poor uniformity and endurance problems. Here we report an analogue computing platform based on a selector-less analogue memristor array. We use interfacial-type titanium oxide memristors with a gradual oxygen distribution that exhibit high reliability, high linearity, forming-free attribute and self-rectification. Our platform—which consists of a selector-less (one-memristor) 1 K (32 × 32) crossbar array, peripheral circuitry and digital controller—can run AI algorithms in the analogue domain by self-calibration without compensation operations or pretraining. We illustrate the capabilities of the system with real-time video foreground and background separation, achieving an average peak signal-to-noise ratio of 30.49 dB and a structural similarity index measure of 0.81; these values are similar to those of simulations for the ideal case.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.