Kaushik Adhikari, Karen Sanguinet, Carolyn Pearce, Markus Flury
{"title":"Uptake of Polystyrene Nanospheres by Wheat and Arabidopsis Roots in Agar, Hydroponics, and Soil","authors":"Kaushik Adhikari, Karen Sanguinet, Carolyn Pearce, Markus Flury","doi":"10.1039/d4en01182a","DOIUrl":null,"url":null,"abstract":"Plant uptake of micro- and nanoplastics can lead to contamination of food with plastic particles and subsequent human consumption of plastics. There is evidence that plant roots can take up micro- and nanoplastics; however, most of this evidence stems from experiments conducted with plants grown in hydroponics or agar systems where uptake of nanoparticles by roots is more favorable than when plants were grown in soil. Here, we discern the root uptake and accumulation of polystyrene nanospheres in plants grown in different growing media: agar, hydroponics, and soil. In addition, we tested the impacts of nanospheres on plant biomass and plant stress. Wheat and Arabidopsis thaliana were grown in agar, hydroponics, and soil media and exposed to polystyrene nanospheres. Three different nanospheres were used (40 nm and 200 nm carboxylate-modified and 200 nm amino-modified polystyrene) and uniformly mixed into the growing media. Plants were grown for 7 to 10 days and roots were then examined for the presence of nanospheres by confocal laser scanning microscopy and scanning electron microscopy. Plant stress was evaluated by measuring reactive oxygen species (ROS). We observed the 40 nm nanospheres inside plant roots, but the 200 nm nanospheres only adhered to root cap cells showing no uptake into the roots. Furthermore, confocal images indicated that root uptake of nanospheres was favored in hydroponic solutions as compared to agar and soil media. Plant biomass was generally not affected by the nanospheres, except for hydroponically grown A.~thaliana, where biomass was significantly reduced. Small sized (40 nm) and positively charged (200 nm amino-modified) nanospheres showed higher ROS accumulation in plants than negatively charged 200 nm carboxylate-modified nanospheres. This study provides evidence that polystyrene nanospheres can be taken up into the interior of plant roots and cause plant stress, but these impacts are less pronounced in media where the plastic particles are less mobile, like in agar and soil media as compared to hydroponic systems.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"78 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en01182a","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant uptake of micro- and nanoplastics can lead to contamination of food with plastic particles and subsequent human consumption of plastics. There is evidence that plant roots can take up micro- and nanoplastics; however, most of this evidence stems from experiments conducted with plants grown in hydroponics or agar systems where uptake of nanoparticles by roots is more favorable than when plants were grown in soil. Here, we discern the root uptake and accumulation of polystyrene nanospheres in plants grown in different growing media: agar, hydroponics, and soil. In addition, we tested the impacts of nanospheres on plant biomass and plant stress. Wheat and Arabidopsis thaliana were grown in agar, hydroponics, and soil media and exposed to polystyrene nanospheres. Three different nanospheres were used (40 nm and 200 nm carboxylate-modified and 200 nm amino-modified polystyrene) and uniformly mixed into the growing media. Plants were grown for 7 to 10 days and roots were then examined for the presence of nanospheres by confocal laser scanning microscopy and scanning electron microscopy. Plant stress was evaluated by measuring reactive oxygen species (ROS). We observed the 40 nm nanospheres inside plant roots, but the 200 nm nanospheres only adhered to root cap cells showing no uptake into the roots. Furthermore, confocal images indicated that root uptake of nanospheres was favored in hydroponic solutions as compared to agar and soil media. Plant biomass was generally not affected by the nanospheres, except for hydroponically grown A.~thaliana, where biomass was significantly reduced. Small sized (40 nm) and positively charged (200 nm amino-modified) nanospheres showed higher ROS accumulation in plants than negatively charged 200 nm carboxylate-modified nanospheres. This study provides evidence that polystyrene nanospheres can be taken up into the interior of plant roots and cause plant stress, but these impacts are less pronounced in media where the plastic particles are less mobile, like in agar and soil media as compared to hydroponic systems.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis