Rick P. A. Simon, Janet Anders, Karen V. Hovhannisyan
{"title":"Correlations Enable Lossless Ergotropy Transport","authors":"Rick P. A. Simon, Janet Anders, Karen V. Hovhannisyan","doi":"10.1103/physrevlett.134.010408","DOIUrl":null,"url":null,"abstract":"“A battery powers a device” can be read as “work stored in the battery is being transported to the device.” In quantum batteries, the total amount of stored work can be measured by ergotropy, which is the maximal work extractable by unitary operations. Transporting ergotropy is fundamentally different from transporting energy, and here we find that ergotropy can be even when the transmission channel is strictly energy conserving. We show that, generically, ergotropy transport is lossy whenever the two systems start uncorrelated. In contrast, for a large class of correlated initial states, transport can be gainful. Furthermore, a single correlated state can be used multiple times, allowing to transport without losses an order of magnitude more work than the battery capacity. Correlations are thus a useful resource for ergotropy transport, and we quantify how this resource is consumed during gainful transport. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"133 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.010408","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
“A battery powers a device” can be read as “work stored in the battery is being transported to the device.” In quantum batteries, the total amount of stored work can be measured by ergotropy, which is the maximal work extractable by unitary operations. Transporting ergotropy is fundamentally different from transporting energy, and here we find that ergotropy can be even when the transmission channel is strictly energy conserving. We show that, generically, ergotropy transport is lossy whenever the two systems start uncorrelated. In contrast, for a large class of correlated initial states, transport can be gainful. Furthermore, a single correlated state can be used multiple times, allowing to transport without losses an order of magnitude more work than the battery capacity. Correlations are thus a useful resource for ergotropy transport, and we quantify how this resource is consumed during gainful transport. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks