Impacts of groundwater storage variability on soil salinization in a semi-arid agricultural plain

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE
Geng Cui, Yan Liu, Xiaojie Li, Shan Wang, Xiangning Qu, Lei Wang, Shouzheng Tong, Mingye Zhang, Xiaofeng Li, Wenqiang Zhang
{"title":"Impacts of groundwater storage variability on soil salinization in a semi-arid agricultural plain","authors":"Geng Cui, Yan Liu, Xiaojie Li, Shan Wang, Xiangning Qu, Lei Wang, Shouzheng Tong, Mingye Zhang, Xiaofeng Li, Wenqiang Zhang","doi":"10.1016/j.geoderma.2024.117162","DOIUrl":null,"url":null,"abstract":"Soil salinization, which is significantly influenced by groundwater storage dynamics, leads to reduced land productivity, loss of arable land, and degradation of vegetation, thereby posing a substantial threat to global food security and ecosystem functions. The western Songnen Plain (WSP) is one of the world’s three largest concentrations of soda saline-alkaline regions. However, the availability of observed data on groundwater storage dynamics in the WSP remains limited, potentially impeding the evaluation of their impacts on soil salinization processes. This study investigated the impact of groundwater storage variability on soil salinization in the WSP, utilizing multi-source satellite data, the Global Land Data Assimilation System hydrological model data, and ground observation data. Our results demonstrated that groundwater storage anomalies (GWSAs) exhibited cyclical fluctuations from 2002 to 2014, followed by a substantial decline of 13.215 cm equivalent water height from 2015 to 2021. GWSAs exhibited a significant positive relationship with the area of medium-salinized soils that comprised over 56 % of the total salinized soil area. Both the area and degree of soil salinization overall decreased in the WSP due to the decline in groundwater storage and the implementation of soil improvement policies. Our results suggest that targeting soil treatment projects on salinized soils that are less affected by groundwater conditions could potentially mitigate soil salinization in the WSP. This study assessed the potential impact of groundwater storage variability on soil salinization, enhancing mechanisms underlying salinization processes and offering valuable data to inform land and water resources management in salinization-prone regions.","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"25 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.geoderma.2024.117162","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil salinization, which is significantly influenced by groundwater storage dynamics, leads to reduced land productivity, loss of arable land, and degradation of vegetation, thereby posing a substantial threat to global food security and ecosystem functions. The western Songnen Plain (WSP) is one of the world’s three largest concentrations of soda saline-alkaline regions. However, the availability of observed data on groundwater storage dynamics in the WSP remains limited, potentially impeding the evaluation of their impacts on soil salinization processes. This study investigated the impact of groundwater storage variability on soil salinization in the WSP, utilizing multi-source satellite data, the Global Land Data Assimilation System hydrological model data, and ground observation data. Our results demonstrated that groundwater storage anomalies (GWSAs) exhibited cyclical fluctuations from 2002 to 2014, followed by a substantial decline of 13.215 cm equivalent water height from 2015 to 2021. GWSAs exhibited a significant positive relationship with the area of medium-salinized soils that comprised over 56 % of the total salinized soil area. Both the area and degree of soil salinization overall decreased in the WSP due to the decline in groundwater storage and the implementation of soil improvement policies. Our results suggest that targeting soil treatment projects on salinized soils that are less affected by groundwater conditions could potentially mitigate soil salinization in the WSP. This study assessed the potential impact of groundwater storage variability on soil salinization, enhancing mechanisms underlying salinization processes and offering valuable data to inform land and water resources management in salinization-prone regions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信