{"title":"tRNA thiolation optimizes appressorium-mediated infection by enhancing codon-specific translation in Magnaporthe oryzae","authors":"Xinrong Zhang, Rongrong He, Yinan Li, Shuchao Ren, Shikun Xiang, Jing Zheng, Zhiguang Qu, Shu Zhou, Zhipeng Zhou, Xiao-Lin Chen","doi":"10.1093/nar/gkae1302","DOIUrl":null,"url":null,"abstract":"Thiolation, a post-transcriptional modification catalyzed by Uba4-Urm1-Ncs2/Ncs6 pathway in three specific transfer RNAs (tRNAs), is conserved from yeast to humans and plays an important role in enhancing codon–anticodon interaction and translation efficiency. Yet, except for affecting effector secretion, its roles in plant pathogenic fungi are not fully understood. Here, we used Magnaporthe oryzae as a model system to illustrate the vital role of s2U34 modification on the appressorium-mediated virulence. The absence of tRNA thiolation leads to diminished translation elongation at AAA/CAA/GAA but not their synonymous codons, resulting in reduced levels of key proteins enriched in these codons, which are critical for appressorium development and function. Importantly, overexpressing these proteins can partially mitigate the defects resulting from NCS2 deletion. Our study sheds light on the s2U34 modification’s role in plant pathogenic fungi, enhancing our understanding of translational control beyond effector secretion.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"22 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1302","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thiolation, a post-transcriptional modification catalyzed by Uba4-Urm1-Ncs2/Ncs6 pathway in three specific transfer RNAs (tRNAs), is conserved from yeast to humans and plays an important role in enhancing codon–anticodon interaction and translation efficiency. Yet, except for affecting effector secretion, its roles in plant pathogenic fungi are not fully understood. Here, we used Magnaporthe oryzae as a model system to illustrate the vital role of s2U34 modification on the appressorium-mediated virulence. The absence of tRNA thiolation leads to diminished translation elongation at AAA/CAA/GAA but not their synonymous codons, resulting in reduced levels of key proteins enriched in these codons, which are critical for appressorium development and function. Importantly, overexpressing these proteins can partially mitigate the defects resulting from NCS2 deletion. Our study sheds light on the s2U34 modification’s role in plant pathogenic fungi, enhancing our understanding of translational control beyond effector secretion.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.